# PaddleNLP Embedding API - [Embedding 模型汇总](#embedding-模型汇总) - [中文词向量](#中文词向量) - [英文词向量](#英文词向量) - [GloVe](#glove) - [FastText](#fasttext) - [使用方式](#使用方式) - [模型信息](#模型信息) - [致谢](#致谢) - [参考论文](#参考论文) # Embedding 模型汇总 PaddleNLP提供多个开源的预训练Embedding模型,用户仅需在使用`paddlenlp.embeddings.TokenEmbedding`时,指定预训练模型的名称,即可加载相对应的预训练模型。以下为PaddleNLP所支持的预训练Embedding模型,其名称用作`paddlenlp.embeddings.TokenEmbedding`的参数。命名方式为:\${训练模型}.\${语料}.\${词向量类型}.\${co-occurrence type}.dim\${维度}。训练模型有三种,分别是Word2Vec(w2v, 使用skip-gram模型训练), GloVe(glove)和FastText(fasttext)。在[使用方式](#使用方式)这一节中,将介绍如何通过模型名称使用`paddlenlp.embeddings.TokenEmbedding`加载预训练模型。 ## 中文词向量 以下预训练模型由[Chinese-Word-Vectors](https://github.com/Embedding/Chinese-Word-Vectors)提供。 根据不同类型的上下文为每个语料训练多个目标词向量,第二列开始表示不同类型的上下文。以下为上下文类别: * Word表示训练时目标词预测的上下文是一个Word。 * Word + Ngram表示训练时目标词预测的上下文是一个Word或者Ngram,其中bigram表示2-grams,ngram.1-2表示1-gram或者2-grams。 * Word + Character表示训练时目标词预测的上下文是一个Word或者Character,其中word-character.char1-2表示上下文是1个或2个Character。 * Word + Character + Ngram表示训练时目标词预测的上下文是一个Word、Character或者Ngram。bigram-char表示上下文是2-grams或者1个Character。 | 语料 | Word | Word + Ngram | Word + Character | Word + Character + Ngram | | ------------------------------------------- | ---- | ---- | ---- | ---- | | Baidu Encyclopedia 百度百科 | w2v.baidu_encyclopedia.target.word-word.dim300 | w2v.baidu_encyclopedia.target.word-ngram.1-2.dim300 | w2v.baidu_encyclopedia.target.word-character.char1-2.dim300 | w2v.baidu_encyclopedia.target.bigram-char.dim300 | | Wikipedia_zh 中文维基百科 | w2v.wiki.target.word-word.dim300 | w2v.wiki.target.word-bigram.dim300 | w2v.wiki.target.word-char.dim300 | w2v.wiki.target.bigram-char.dim300 | | People's Daily News 人民日报 | w2v.people_daily.target.word-word.dim300 | w2v.people_daily.target.word-bigram.dim300 | w2v.people_daily.target.word-char.dim300 | w2v.people_daily.target.bigram-char.dim300 | | Sogou News 搜狗新闻 | w2v.sogou.target.word-word.dim300 | w2v.sogou.target.word-bigram.dim300 | w2v.sogou.target.word-char.dim300 | w2v.sogou.target.bigram-char.dim300 | | Financial News 金融新闻 | w2v.financial.target.word-word.dim300 | w2v.financial.target.word-bigram.dim300 | w2v.financial.target.word-char.dim300 | w2v.financial.target.bigram-char.dim300 | | Zhihu_QA 知乎问答 | w2v.zhihu.target.word-word.dim300 | w2v.zhihu.target.word-bigram.dim300 | w2v.zhihu.target.word-char.dim300 | w2v.zhihu.target.bigram-char.dim300 | | Weibo 微博 | w2v.weibo.target.word-word.dim300 | w2v.weibo.target.word-bigram.dim300 | w2v.weibo.target.word-char.dim300 | w2v.weibo.target.bigram-char.dim300 | | Literature 文学作品 | w2v.literature.target.word-word.dim300 | w2v.literature.target.word-bigram.dim300 | w2v.literature.target.word-char.dim300 | w2v.literature.target.bigram-char.dim300 | | Complete Library in Four Sections 四库全书 | w2v.sikuquanshu.target.word-word.dim300 | w2v.sikuquanshu.target.word-bigram.dim300 | 无 | 无 | | Mixed-large 综合 | w2v.mixed-large.target.word-word.dim300 | 暂无 | w2v.mixed-large.target.word-word.dim300 | 暂无 | 特别地,对于百度百科语料,在不同的 Co-occurrence类型下分别提供了目标词与上下文向量: | Co-occurrence 类型 | 目标词向量 | 上下文词向量 | | --------------------------- | ------ | ---- | | Word → Word | w2v.baidu_encyclopedia.target.word-word.dim300 | w2v.baidu_encyclopedia.context.word-word.dim300 | | Word → Ngram (1-2) | w2v.baidu_encyclopedia.target.word-ngram.1-2.dim300 | w2v.baidu_encyclopedia.context.word-ngram.1-2.dim300 | | Word → Ngram (1-3) | w2v.baidu_encyclopedia.target.word-ngram.1-3.dim300 | w2v.baidu_encyclopedia.context.word-ngram.1-3.dim300 | | Ngram (1-2) → Ngram (1-2)| w2v.baidu_encyclopedia.target.word-ngram.2-2.dim300 | w2v.baidu_encyclopedia.target.word-ngram.2-2.dim300 | | Word → Character (1) | w2v.baidu_encyclopedia.target.word-character.char1-1.dim300 | w2v.baidu_encyclopedia.context.word-character.char1-1.dim300 | | Word → Character (1-2) | w2v.baidu_encyclopedia.target.word-character.char1-2.dim300 | w2v.baidu_encyclopedia.context.word-character.char1-2.dim300 | | Word → Character (1-4) | w2v.baidu_encyclopedia.target.word-character.char1-4.dim300 | w2v.baidu_encyclopedia.context.word-character.char1-4.dim300 | | Word → Word (left/right) | w2v.baidu_encyclopedia.target.word-wordLR.dim300 | w2v.baidu_encyclopedia.context.word-wordLR.dim300 | | Word → Word (distance) | w2v.baidu_encyclopedia.target.word-wordPosition.dim300 | w2v.baidu_encyclopedia.context.word-wordPosition.dim300 | ## 英文词向量 ### GloVe | 语料 | 25维 | 50维 | 100维 | 200维 | 300 维 | | ----------------- | ------ | ------ | ------ | ------ | ------ | | Wiki2014 + GigaWord | 无 | glove.wiki2014-gigaword.target.word-word.dim50.en | glove.wiki2014-gigaword.target.word-word.dim100.en | glove.wiki2014-gigaword.target.word-word.dim200.en | glove.wiki2014-gigaword.target.word-word.dim300.en | | Twitter | glove.twitter.target.word-word.dim25.en | glove.twitter.target.word-word.dim50.en | glove.twitter.target.word-word.dim100.en | glove.twitter.target.word-word.dim200.en | 无 | ### FastText | 语料 | 名称 | |------|------| | Wiki2017 | fasttext.wiki-news.target.word-word.dim300.en | | Crawl | fasttext.crawl.target.word-word.dim300.en | ## 使用方式 以上所述的模型名称可直接以参数形式传入padddlenlp.embeddings.TokenEmbedding,加载相对应的模型。比如要加载语料为Wiki2017,通过FastText训练的预训练模型(`fasttext.wiki-news.target.word-word.dim300.en`),只需执行以下代码: ```python import paddle from paddlenlp.embeddings import TokenEmbedding token_embedding = TokenEmbedding(embedding_name="fasttext.wiki-news.target.word-word.dim300.en") ``` ## 模型信息 | 模型 | 文件大小 | 词表大小 | |-----|---------|---------| | w2v.baidu_encyclopedia.target.word-word.dim300 | 678.21 MB | 635965 | | w2v.baidu_encyclopedia.target.word-character.char1-1.dim300 | 679.15 MB | 636038 | | w2v.baidu_encyclopedia.target.word-character.char1-2.dim300 | 679.30 MB | 636038 | | w2v.baidu_encyclopedia.target.word-character.char1-4.dim300 | 679.51 MB | 636038 | | w2v.baidu_encyclopedia.target.word-ngram.1-2.dim300 | 679.48 MB | 635977 | | w2v.baidu_encyclopedia.target.word-ngram.1-3.dim300 | 671.27 MB | 628669 | | w2v.baidu_encyclopedia.target.word-ngram.2-2.dim300 | 7.28 GB | 6969069 | | w2v.baidu_encyclopedia.target.word-wordLR.dim300 | 678.22 MB | 635958 | | w2v.baidu_encyclopedia.target.word-wordPosition.dim300 | 679.32 MB | 636038 | | w2v.baidu_encyclopedia.target.bigram-char.dim300 | 679.29 MB | 635976 | | w2v.baidu_encyclopedia.context.word-word.dim300 | 677.74 MB | 635952 | | w2v.baidu_encyclopedia.context.word-character.char1-1.dim300 | 678.65 MB | 636200 | | w2v.baidu_encyclopedia.context.word-character.char1-2.dim300 | 844.23 MB | 792631 | | w2v.baidu_encyclopedia.context.word-character.char1-4.dim300 | 1.16 GB | 1117461 | | w2v.baidu_encyclopedia.context.word-ngram.1-2.dim300 | 7.25 GB | 6967598 | | w2v.baidu_encyclopedia.context.word-ngram.1-3.dim300 | 5.21 GB | 5000001 | | w2v.baidu_encyclopedia.context.word-ngram.2-2.dim300 | 7.26 GB | 6968998 | | w2v.baidu_encyclopedia.context.word-wordLR.dim300 | 1.32 GB | 1271031 | | w2v.baidu_encyclopedia.context.word-wordPosition.dim300 | 6.47 GB | 6293920 | | w2v.wiki.target.bigram-char.dim300 | 375.98 MB | 352274 | | w2v.wiki.target.word-char.dim300 | 375.52 MB | 352223 | | w2v.wiki.target.word-word.dim300 | 374.95 MB | 352219 | | w2v.wiki.target.word-bigram.dim300 | 375.72 MB | 352219 | | w2v.people_daily.target.bigram-char.dim300 | 379.96 MB | 356055 | | w2v.people_daily.target.word-char.dim300 | 379.45 MB | 355998 | | w2v.people_daily.target.word-word.dim300 | 378.93 MB | 355989 | | w2v.people_daily.target.word-bigram.dim300 | 379.68 MB | 355991 | | w2v.weibo.target.bigram-char.dim300 | 208.24 MB | 195199 | | w2v.weibo.target.word-char.dim300 | 208.03 MB | 195204 | | w2v.weibo.target.word-word.dim300 | 207.94 MB | 195204 | | w2v.weibo.target.word-bigram.dim300 | 208.19 MB | 195204 | | w2v.sogou.target.bigram-char.dim300 | 389.81 MB | 365112 | | w2v.sogou.target.word-char.dim300 | 389.89 MB | 365078 | | w2v.sogou.target.word-word.dim300 | 388.66 MB | 364992 | | w2v.sogou.target.word-bigram.dim300 | 388.66 MB | 364994 | | w2v.zhihu.target.bigram-char.dim300 | 277.35 MB | 259755 | | w2v.zhihu.target.word-char.dim300 | 277.40 MB | 259940 | | w2v.zhihu.target.word-word.dim300 | 276.98 MB | 259871 | | w2v.zhihu.target.word-bigram.dim300 | 277.53 MB | 259885 | | w2v.financial.target.bigram-char.dim300 | 499.52 MB | 467163 | | w2v.financial.target.word-char.dim300 | 499.17 MB | 467343 | | w2v.financial.target.word-word.dim300 | 498.94 MB | 467324 | | w2v.financial.target.word-bigram.dim300 | 499.54 MB | 467331 | | w2v.literature.target.bigram-char.dim300 | 200.69 MB | 187975 | | w2v.literature.target.word-char.dim300 | 200.44 MB | 187980 | | w2v.literature.target.word-word.dim300 | 200.28 MB | 187961 | | w2v.literature.target.word-bigram.dim300 | 200.59 MB | 187962 | | w2v.sikuquanshu.target.word-word.dim300 | 20.70 MB | 19529 | | w2v.sikuquanshu.target.word-bigram.dim300 | 20.77 MB | 19529 | | w2v.mixed-large.target.word-char.dim300 | 1.35 GB | 1292552 | | w2v.mixed-large.target.word-word.dim300 | 1.35 GB | 1292483 | | glove.wiki2014-gigaword.target.word-word.dim50.en | 73.45 MB | 400002 | | glove.wiki2014-gigaword.target.word-word.dim100.en | 143.30 MB | 400002 | | glove.wiki2014-gigaword.target.word-word.dim200.en | 282.97 MB | 400002 | | glove.wiki2014-gigaword.target.word-word.dim300.en | 422.83 MB | 400002 | | glove.twitter.target.word-word.dim25.en | 116.92 MB | 1193516 | | glove.twitter.target.word-word.dim50.en | 221.64 MB | 1193516 | | glove.twitter.target.word-word.dim100.en | 431.08 MB | 1193516 | | glove.twitter.target.word-word.dim200.en | 848.56 MB | 1193516 | | fasttext.wiki-news.target.word-word.dim300.en | 541.63 MB | 999996 | | fasttext.crawl.target.word-word.dim300.en | 1.19 GB | 2000002 | ## 致谢 - 感谢 [Chinese-Word-Vectors](https://github.com/Embedding/Chinese-Word-Vectors)提供Word2Vec中文Embedding预训练模型。 - 感谢 [GloVe Project](https://nlp.stanford.edu/projects/glove)提供的GloVe英文Embedding预训练模型。 - 感谢 [FastText Project](https://fasttext.cc/docs/en/english-vectors.html)提供的fasttext英文预训练模型。 ## 参考论文 - Li, Shen, et al. "Analogical reasoning on chinese morphological and semantic relations." arXiv preprint arXiv:1805.06504 (2018). - Qiu, Yuanyuan, et al. "Revisiting correlations between intrinsic and extrinsic evaluations of word embeddings." Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Springer, Cham, 2018. 209-221. - Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation. - T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin. Advances in Pre-Training Distributed Word Representations