# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import time import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid import profiler from utils.timer import TimeAverager import logging import shutil logger = logging.getLogger(__name__) def log_lr_and_step(): try: # In optimizers, if learning_rate is set as constant, lr_var # name is 'learning_rate_0', and iteration counter is not # recorded. If learning_rate is set as decayed values from # learning_rate_scheduler, lr_var name is 'learning_rate', # and iteration counter is recorded with name '@LR_DECAY_COUNTER@', # better impliment is required here lr_var = fluid.global_scope().find_var("learning_rate") if not lr_var: lr_var = fluid.global_scope().find_var("learning_rate_0") lr = np.array(lr_var.get_tensor()) lr_count = '[-]' lr_count_var = fluid.global_scope().find_var("@LR_DECAY_COUNTER@") if lr_count_var: lr_count = np.array(lr_count_var.get_tensor()) logger.info("------- learning rate {}, learning rate counter {} -----" .format(np.array(lr), np.array(lr_count))) except: logger.warn("Unable to get learning_rate and LR_DECAY_COUNTER.") def test_with_dataloader(exe, compiled_test_prog, test_dataloader, test_fetch_list, test_metrics, log_interval=0, save_model_name=''): if not test_dataloader: logger.error("[TEST] get dataloader failed.") test_metrics.reset() test_iter = 0 for data in test_dataloader(): test_outs = exe.run(compiled_test_prog, fetch_list=test_fetch_list, feed=data) test_metrics.accumulate(test_outs) if log_interval > 0 and test_iter % log_interval == 0: test_metrics.calculate_and_log_out(test_outs, \ info = '[TEST] test_iter {} '.format(test_iter)) test_iter += 1 test_metrics.finalize_and_log_out("[TEST] Finish") def train_with_dataloader(exe, train_prog, compiled_train_prog, train_dataloader, \ train_fetch_list, train_metrics, epochs = 10, \ log_interval = 0, valid_interval = 0, save_dir = './', \ num_trainers = 1, trainer_id = 0, \ save_model_name = 'model', fix_random_seed = False, \ compiled_test_prog = None, test_dataloader = None, \ test_fetch_list = None, test_metrics = None, \ is_profiler = None, profiler_path = None): if not train_dataloader: logger.error("[TRAIN] get dataloader failed.") train_loss = 0 epoch_periods = [] reader_cost_averager = TimeAverager() batch_cost_averager = TimeAverager() for epoch in range(epochs): log_lr_and_step() train_iter = 0 epoch_periods = [] batch_start = time.time() for data in train_dataloader(): reader_cost_averager.record(time.time() - batch_start) train_outs = exe.run(compiled_train_prog, fetch_list=train_fetch_list, feed=data) batch_cost = time.time() - batch_start epoch_periods.append(batch_cost) batch_cost_averager.record(batch_cost) local_time = time.localtime(time.time()) str_time = time.strftime("%Y-%m-%d %H:%M:%S", local_time) if log_interval > 0 and (train_iter % log_interval == 0): train_metrics.calculate_and_log_out(train_outs, \ info = '[TRAIN {}] Epoch {}, iter {}, batch_cost {:.5}, reader_cost {:.5}'.format(str_time, epoch, train_iter, batch_cost_averager.get_average(), reader_cost_averager.get_average())) reader_cost_averager.reset() batch_cost_averager.reset() train_iter += 1 batch_start = time.time() # NOTE: profiler tools, used for benchmark if is_profiler and epoch == 0 and train_iter == log_interval: profiler.start_profiler("All") elif is_profiler and epoch == 0 and train_iter == log_interval + 5: profiler.stop_profiler("total", profiler_path) return if len(epoch_periods) < 1: logger.info( 'No iteration was executed, please check the data reader') sys.exit(1) logger.info('[TRAIN] Epoch {} training finished, average time: {}'. format(epoch, np.mean(epoch_periods[1:]))) if trainer_id == 0: save_model(exe, train_prog, save_dir, save_model_name, "_epoch{}".format(epoch)) if compiled_test_prog and valid_interval > 0 and ( epoch + 1) % valid_interval == 0: test_with_dataloader(exe, compiled_test_prog, test_dataloader, test_fetch_list, test_metrics, log_interval, save_model_name) if trainer_id == 0: save_model(exe, train_prog, save_dir, save_model_name) #when fix_random seed for debug if fix_random_seed: cards = os.environ.get('CUDA_VISIBLE_DEVICES') gpu_num = len(cards.split(",")) print("kpis\ttrain_cost_card{}\t{}".format(gpu_num, train_loss)) print("kpis\ttrain_speed_card{}\t{}".format(gpu_num, np.mean(epoch_periods))) def save_model(exe, program, save_dir, model_name, postfix=''): """save paramters and optimizer related varaibles""" if not os.path.isdir(save_dir): os.makedirs(save_dir) saved_model_name = model_name + postfix fluid.save(program, os.path.join(save_dir, saved_model_name)) return