# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import basic_config def decatt_glove(): """ use config 'decAtt_glove' in the paper 'Neural Paraphrase Identification of Questions with Noisy Pretraining' """ config = basic_config.config() config.learning_rate = 0.05 config.save_dirname = "model_dir" config.use_pretrained_word_embedding = True config.dict_dim = 40000 # approx_vocab_size config.metric_type = ['accuracy', 'accuracy_with_threshold'] config.optimizer_type = 'sgd' config.lr_decay = 1 config.use_lod_tensor = False config.embedding_norm = False config.OOV_fill = 'uniform' config.duplicate_data = False # net config config.emb_dim = 300 config.proj_emb_dim = 200 #TODO: has project? config.num_units = [400, 200] config.word_embedding_trainable = True config.droprate = 0.1 config.share_wight_btw_seq = True config.class_dim = 2 return config def decatt_word(): """ use config 'decAtt_glove' in the paper 'Neural Paraphrase Identification of Questions with Noisy Pretraining' """ config = basic_config.config() config.learning_rate = 0.05 config.save_dirname = "model_dir" config.use_pretrained_word_embedding = False config.dict_dim = 40000 # approx_vocab_size config.metric_type = ['accuracy', 'accuracy_with_threshold'] config.optimizer_type = 'sgd' config.lr_decay = 1 config.use_lod_tensor = False config.embedding_norm = False config.OOV_fill = 'uniform' config.duplicate_data = False # net config config.emb_dim = 300 config.proj_emb_dim = 200 #TODO: has project? config.num_units = [400, 200] config.word_embedding_trainable = True config.droprate = 0.1 config.share_wight_btw_seq = True config.class_dim = 2 return config