import argparse import logging import numpy as np # disable gpu training for this example import os os.environ["CUDA_VISIBLE_DEVICES"] = "" import paddle import paddle.fluid as fluid import map_reader from network_conf import ctr_deepfm_dataset logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) def parse_args(): parser = argparse.ArgumentParser(description="PaddlePaddle DeepFM example") parser.add_argument( '--model_path', type=str, #required=True, default='models', help="The path of model parameters gz file") parser.add_argument( '--data_path', type=str, required=False, help="The path of the dataset to infer") parser.add_argument( '--embedding_size', type=int, default=16, help="The size for embedding layer (default:10)") parser.add_argument( '--sparse_feature_dim', type=int, default=1000001, help="The size for embedding layer (default:1000001)") parser.add_argument( '--batch_size', type=int, default=1000, help="The size of mini-batch (default:1000)") return parser.parse_args() def to_lodtensor(data, place): seq_lens = [len(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def data2tensor(data, place): feed_dict = {} test_dict = {} dense = data[0] sparse = data[1:-1] y = data[-1] dense_data = np.array([x[0] for x in data]).astype("float32") dense_data = dense_data.reshape([-1, 65]) feed_dict["user_profile"] = dense_data for i in range(10): sparse_data = to_lodtensor([x[1 + i] for x in data], place) feed_dict["context" + str(i)] = sparse_data y_data = np.array([x[-1] for x in data]).astype("int64") y_data = y_data.reshape([-1, 1]) feed_dict["label"] = y_data test_dict["test"] = [1] return feed_dict, test_dict def infer(): args = parse_args() place = fluid.CPUPlace() inference_scope = fluid.core.Scope() filelist = [ "%s/%s" % (args.data_path, x) for x in os.listdir(args.data_path) ] from map_reader import MapDataset map_dataset = MapDataset() map_dataset.setup(args.sparse_feature_dim) exe = fluid.Executor(place) whole_filelist = [ "raw_data/part-%d" % x for x in range(len(os.listdir("raw_data"))) ] #whole_filelist = ["./out/normed_train09", "./out/normed_train10", "./out/normed_train11"] test_files = whole_filelist[int(0.0 * len(whole_filelist)):int(1.0 * len( whole_filelist))] # file_groups = [whole_filelist[i:i+train_thread_num] for i in range(0, len(whole_filelist), train_thread_num)] def set_zero(var_name): param = inference_scope.var(var_name).get_tensor() param_array = np.zeros(param._get_dims()).astype("int64") param.set(param_array, place) epochs = 2 for i in range(epochs): cur_model_path = os.path.join(args.model_path, "epoch" + str(i + 1) + ".model") with fluid.scope_guard(inference_scope): [inference_program, feed_target_names, fetch_targets] = \ fluid.io.load_inference_model(cur_model_path, exe) auc_states_names = ['_generated_var_2', '_generated_var_3'] for name in auc_states_names: set_zero(name) test_reader = map_dataset.infer_reader(test_files, 1000, 100000) for batch_id, data in enumerate(test_reader()): loss_val, auc_val, accuracy, predict, label = exe.run( inference_program, feed=data2tensor(data, place), fetch_list=fetch_targets, return_numpy=False) #print(np.array(predict)) #x = np.array(predict) #print(.shape)x #print("train_pass_%d, test_pass_%d\t%f\t" % (i - 1, i, auc_val)) if __name__ == '__main__': infer()