# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import math class Lr(object): """ 示例:使用poly策略, 有热身, lr_scheduler = Lr(lr_policy='poly', base_lr=0.003, epoch_nums=200, step_per_epoch=20, warm_up=True, warmup_epoch=11) lr = lr_scheduler.get_lr() 示例:使用cosine策略, 有热身, lr_scheduler = Lr(lr_policy='cosine', base_lr=0.003, epoch_nums=200, step_per_epoch=20, warm_up=True, warmup_epoch=11) lr = lr_scheduler.get_lr() 示例:使用piecewise策略, 有热身,必须设置边界(decay_epoch list), gamma系数默认0.1 lr_scheduler = Lr(lr_policy='piecewise', base_lr=0.003, epoch_nums=200, step_per_epoch=20, warm_up=True, warmup_epoch=11, decay_epoch=[50], gamma=0.1) lr = lr_scheduler.get_lr() """ def __init__(self, lr_policy, base_lr, epoch_nums, step_per_epoch, power=0.9, end_lr=0.0, gamma=0.1, decay_epoch=[], warm_up=False, warmup_epoch=0): support_lr_policy = ['poly', 'piecewise', 'cosine'] assert lr_policy in support_lr_policy, "Only support poly, piecewise, cosine" self.lr_policy = lr_policy # 学习率衰减策略 : str(`cosine`, `poly`, `piecewise`) assert base_lr >= 0, "Start learning rate should greater than 0" self.base_lr = base_lr # 基础学习率: float assert end_lr >= 0, "End learning rate should greater than 0" self.end_lr = end_lr # 学习率终点: float assert epoch_nums, "epoch_nums should greater than 0" assert step_per_epoch, "step_per_epoch should greater than 0" self.epoch_nums = epoch_nums # epoch数: int self.step_per_epoch = step_per_epoch # 每个epoch的迭代数: int self.total_step = epoch_nums * step_per_epoch # 总的迭代数 :auto self.power = power # 指数: float self.gamma = gamma # 分段衰减的系数: float self.decay_epoch = decay_epoch # 分段衰减的epoch: list if self.lr_policy == 'piecewise': assert len(decay_epoch) >= 1, "use piecewise policy, should set decay_epoch list" self.warm_up = warm_up # 是否热身:bool if self.warm_up: assert warmup_epoch, "warmup_epoch should greater than 0" assert warmup_epoch < epoch_nums, "warmup_epoch should less than epoch_nums" self.warmup_epoch = warmup_epoch self.warmup_steps = warmup_epoch * step_per_epoch # 热身steps:int(epoch*step_per_epoch) def _piecewise_decay(self): gamma = self.gamma bd = [self.step_per_epoch * e for e in self.decay_epoch] lr = [self.base_lr * (gamma ** i) for i in range(len(bd) + 1)] decayed_lr = fluid.layers.piecewise_decay(boundaries=bd, values=lr) return decayed_lr def _poly_decay(self): decayed_lr = fluid.layers.polynomial_decay( self.base_lr, self.total_step, end_learning_rate=self.end_lr, power=self.power) return decayed_lr def _cosine_decay(self): decayed_lr = fluid.layers.cosine_decay( self.base_lr, self.step_per_epoch, self.epoch_nums) return decayed_lr def get_lr(self): if self.lr_policy.lower() == 'poly': if self.warm_up: warm_up_end_lr = (self.base_lr - self.end_lr) * pow( (1 - self.warmup_steps / self.total_step), self.power) + self.end_lr print('poly warm_up_end_lr:', warm_up_end_lr) decayed_lr = fluid.layers.linear_lr_warmup(self._poly_decay(), warmup_steps=self.warmup_steps, start_lr=0.0, end_lr=warm_up_end_lr) else: decayed_lr = self._poly_decay() elif self.lr_policy.lower() == 'piecewise': if self.warm_up: assert self.warmup_steps < self.decay_epoch[0] * self.step_per_epoch warm_up_end_lr = self.base_lr print('piecewise warm_up_end_lr:', warm_up_end_lr) decayed_lr = fluid.layers.linear_lr_warmup(self._piecewise_decay(), warmup_steps=self.warmup_steps, start_lr=0.0, end_lr=warm_up_end_lr) else: decayed_lr = self._piecewise_decay() elif self.lr_policy.lower() == 'cosine': if self.warm_up: warm_up_end_lr = self.base_lr*0.5*(math.cos(self.warmup_epoch*math.pi/self.epoch_nums)+1) print('cosine warm_up_end_lr:', warm_up_end_lr) decayed_lr = fluid.layers.linear_lr_warmup(self._cosine_decay(), warmup_steps=self.warmup_steps, start_lr=0.0, end_lr=warm_up_end_lr) else: decayed_lr = self._cosine_decay() else: raise Exception( "unsupport learning decay policy! only support poly,piecewise,cosine" ) return decayed_lr if __name__ == '__main__': epoch_nums = 200 step_per_epoch = 180 base_lr = 0.003 warmup_epoch = 5 # 热身数 lr_scheduler = Lr(lr_policy='poly', base_lr=base_lr, epoch_nums=epoch_nums, step_per_epoch=step_per_epoch, warm_up=True, warmup_epoch=warmup_epoch, decay_epoch=[50]) lr = lr_scheduler.get_lr() exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) lr_list = [] for epoch in range(epoch_nums): for i in range(step_per_epoch): x = exe.run(fluid.default_main_program(), fetch_list=[lr]) lr_list.append(x[0]) # print(x[0]) # 绘图 from matplotlib import pyplot as plt plt.plot(range(epoch_nums*step_per_epoch), lr_list) plt.xlabel('step') plt.ylabel('lr') plt.show()