# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0" os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = "0.99" import paddle.fluid as fluid import numpy as np import paddle import logging import shutil from datetime import datetime from paddle.utils import Ploter from danet import DANet from options import Options from utils.cityscapes_data import cityscapes_train from utils.cityscapes_data import cityscapes_val from utils.lr_scheduler import Lr def get_model(args): model = DANet('DANet', backbone=args.backbone, num_classes=args.num_classes, batch_size=args.batch_size, dilated=args.dilated, multi_grid=args.multi_grid, multi_dilation=args.multi_dilation) return model def mean_iou(pred, label, num_classes=19): label = fluid.layers.elementwise_min(fluid.layers.cast(label, np.int32), fluid.layers.assign(np.array([num_classes], dtype=np.int32))) label_ig = (label == num_classes).astype('int32') label_ng = (label != num_classes).astype('int32') pred = fluid.layers.cast(fluid.layers.argmax(pred, axis=1), 'int32') pred = pred * label_ng + label_ig * num_classes miou, wrong, correct = fluid.layers.mean_iou(pred, label, num_classes + 1) label.stop_gradient = True return miou, wrong, correct def loss_fn(pred, pred2, pred3, label, num_classes=19): pred = fluid.layers.transpose(pred, perm=[0, 2, 3, 1]) pred = fluid.layers.reshape(pred, [-1, num_classes]) pred2 = fluid.layers.transpose(pred2, perm=[0, 2, 3, 1]) pred2 = fluid.layers.reshape(pred2, [-1, num_classes]) pred3 = fluid.layers.transpose(pred3, perm=[0, 2, 3, 1]) pred3 = fluid.layers.reshape(pred3, [-1, num_classes]) label = fluid.layers.reshape(label, [-1, 1]) pred = fluid.layers.softmax(pred, use_cudnn=False) loss1 = fluid.layers.cross_entropy(pred, label, ignore_index=255) pred2 = fluid.layers.softmax(pred2, use_cudnn=False) loss2 = fluid.layers.cross_entropy(pred2, label, ignore_index=255) pred3 = fluid.layers.softmax(pred3, use_cudnn=False) loss3 = fluid.layers.cross_entropy(pred3, label, ignore_index=255) label.stop_gradient = True return loss1 + loss2 + loss3 def optimizer_setting(args): if args.weight_decay is not None: regular = fluid.regularizer.L2Decay(regularization_coeff=args.weight_decay) else: regular = None if args.lr_scheduler == 'poly': lr_scheduler = Lr(lr_policy='poly', base_lr=args.lr, epoch_nums=args.epoch_num, step_per_epoch=args.step_per_epoch, power=args.lr_pow, warm_up=args.warm_up, warmup_epoch=args.warmup_epoch) decayed_lr = lr_scheduler.get_lr() elif args.lr_scheduler == 'cosine': lr_scheduler = Lr(lr_policy='cosine', base_lr=args.lr, epoch_nums=args.epoch_num, step_per_epoch=args.step_per_epoch, warm_up=args.warm_up, warmup_epoch=args.warmup_epoch) decayed_lr = lr_scheduler.get_lr() elif args.lr_scheduler == 'piecewise': lr_scheduler = Lr(lr_policy='piecewise', base_lr=args.lr, epoch_nums=args.epoch_num, step_per_epoch=args.step_per_epoch, warm_up=args.warm_up, warmup_epoch=args.warmup_epoch, decay_epoch=[50, 100, 150], gamma=0.1) decayed_lr = lr_scheduler.get_lr() else: decayed_lr = args.lr return fluid.optimizer.MomentumOptimizer(learning_rate=decayed_lr, momentum=args.momentum, regularization=regular) def main(args): batch_size = args.batch_size num_epochs = args.epoch_num num_classes = args.num_classes data_root = args.data_folder num = fluid.core.get_cuda_device_count() print('GPU设备数量: {}'.format(num)) # program start_prog = fluid.default_startup_program() train_prog = fluid.default_main_program() start_prog.random_seed = args.seed train_prog.random_seed = args.seed logging.basicConfig(level=logging.INFO, filename='DANet_{}_train.log'.format(args.backbone), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.info('DANet') logging.info(args) place = fluid.CUDAPlace(0) if args.cuda else fluid.CPUPlace() train_loss_title = 'Train_loss' test_loss_title = 'Test_loss' train_iou_title = 'Train_mIOU' test_iou_title = 'Test_mIOU' plot_loss = Ploter(train_loss_title, test_loss_title) plot_iou = Ploter(train_iou_title, test_iou_title) with fluid.dygraph.guard(place): model = get_model(args) x = np.random.randn(batch_size, 3, 224, 224).astype('float32') x = fluid.dygraph.to_variable(x) model(x) # 加载预训练模型 if args.load_pretrained_model: save_dir = 'checkpoint/DANet101_pretrained_model_paddle1.6' if os.path.exists(save_dir + '.pdparams'): param, _ = fluid.load_dygraph(save_dir) model.set_dict(param) assert len(param) == len(model.state_dict()), "参数量不一致,加载参数失败," \ "请核对模型是否初始化/模型是否一致" print('load pretrained model!') # 加载最优模型 if args.load_better_model: save_dir = 'checkpoint/DANet101_better_model_paddle1.6' if os.path.exists(save_dir + '.pdparams'): param, _ = fluid.load_dygraph(save_dir) model.set_dict(param) assert len(param) == len(model.state_dict()), "参数量不一致,加载参数失败," \ "请核对模型是否初始化/模型是否一致" print('load better model!') optimizer = optimizer_setting(args) train_data = cityscapes_train(data_root=data_root, base_size=args.base_size, crop_size=args.crop_size, scale=args.scale, xmap=True, batch_size=batch_size, gpu_num=num) batch_train_data = paddle.batch(paddle.reader.shuffle( train_data, buf_size=batch_size * 64), batch_size=batch_size, drop_last=True) val_data = cityscapes_val(data_root=data_root, base_size=args.base_size, crop_size=args.crop_size, scale=args.scale, xmap=True) batch_test_data = paddle.batch(val_data, batch_size=batch_size, drop_last=True) train_iou_manager = fluid.metrics.Accuracy() train_avg_loss_manager = fluid.metrics.Accuracy() test_iou_manager = fluid.metrics.Accuracy() test_avg_loss_manager = fluid.metrics.Accuracy() better_miou_train = 0 better_miou_test = 0 for epoch in range(num_epochs): prev_time = datetime.now() train_avg_loss_manager.reset() train_iou_manager.reset() for batch_id, data in enumerate(batch_train_data()): image = np.array([x[0] for x in data]).astype('float32') label = np.array([x[1] for x in data]).astype('int64') image = fluid.dygraph.to_variable(image) label = fluid.dygraph.to_variable(label) label.stop_gradient = True pred, pred2, pred3 = model(image) train_loss = loss_fn(pred, pred2, pred3, label, num_classes=num_classes) train_avg_loss = fluid.layers.mean(train_loss) miou, wrong, correct = mean_iou(pred, label, num_classes=num_classes) train_avg_loss.backward() optimizer.minimize(train_avg_loss) model.clear_gradients() train_iou_manager.update(miou.numpy(), weight=batch_size*num) train_avg_loss_manager.update(train_avg_loss.numpy(), weight=batch_size*num) batch_train_str = "epoch: {}, batch: {}, train_avg_loss: {:.6f}, " \ "train_miou: {:.6f}.".format(epoch + 1, batch_id + 1, train_avg_loss.numpy()[0], miou.numpy()[0]) if batch_id % 100 == 0: logging.info(batch_train_str) print(batch_train_str) cur_time = datetime.now() h, remainder = divmod((cur_time - prev_time).seconds, 3600) m, s = divmod(remainder, 60) time_str = " Time %02d:%02d:%02d" % (h, m, s) train_str = "\nepoch: {}, train_avg_loss: {:.6f}, " \ "train_miou: {:.6f}.".format(epoch + 1, train_avg_loss_manager.eval()[0], train_iou_manager.eval()[0]) print(train_str + time_str + '\n') logging.info(train_str + time_str + '\n') plot_loss.append(train_loss_title, epoch, train_avg_loss_manager.eval()[0]) plot_loss.plot('./DANet_loss.jpg') plot_iou.append(train_iou_title, epoch, train_iou_manager.eval()[0]) plot_iou.plot('./DANet_miou.jpg') fluid.dygraph.save_dygraph(model.state_dict(), 'checkpoint/DANet_epoch_new') # save_model if better_miou_train < train_iou_manager.eval()[0]: shutil.rmtree('checkpoint/DAnet_better_train_{:.4f}.pdparams'.format(better_miou_train), ignore_errors=True) better_miou_train = train_iou_manager.eval()[0] fluid.dygraph.save_dygraph(model.state_dict(), 'checkpoint/DAnet_better_train_{:.4f}'.format(better_miou_train)) ########## test ############ model.eval() test_iou_manager.reset() test_avg_loss_manager.reset() prev_time = datetime.now() for (batch_id, data) in enumerate(batch_test_data()): image = np.array([x[0] for x in data]).astype('float32') label = np.array([x[1] for x in data]).astype('int64') image = fluid.dygraph.to_variable(image) label = fluid.dygraph.to_variable(label) label.stop_gradient = True pred, pred2, pred3 = model(image) test_loss = loss_fn(pred, pred2, pred3, label, num_classes=num_classes) test_avg_loss = fluid.layers.mean(test_loss) miou, wrong, correct = mean_iou(pred, label, num_classes=num_classes) test_iou_manager.update(miou.numpy(), weight=batch_size*num) test_avg_loss_manager.update(test_avg_loss.numpy(), weight=batch_size*num) batch_test_str = "epoch: {}, batch: {}, test_avg_loss: {:.6f}, " \ "test_miou: {:.6f}.".format(epoch + 1, batch_id + 1, test_avg_loss.numpy()[0], miou.numpy()[0]) if batch_id % 20 == 0: logging.info(batch_test_str) print(batch_test_str) cur_time = datetime.now() h, remainder = divmod((cur_time - prev_time).seconds, 3600) m, s = divmod(remainder, 60) time_str = " Time %02d:%02d:%02d" % (h, m, s) test_str = "\nepoch: {}, test_avg_loss: {:.6f}, " \ "test_miou: {:.6f}.".format(epoch + 1, test_avg_loss_manager.eval()[0], test_iou_manager.eval()[0]) print(test_str + time_str + '\n') logging.info(test_str + time_str + '\n') plot_loss.append(test_loss_title, epoch, test_avg_loss_manager.eval()[0]) plot_loss.plot('./DANet_loss.jpg') plot_iou.append(test_iou_title, epoch, test_iou_manager.eval()[0]) plot_iou.plot('./DANet_miou.jpg') model.train() # save_model if better_miou_test < test_iou_manager.eval()[0]: shutil.rmtree('checkpoint/DAnet_better_test_{:.4f}.pdparams'.format(better_miou_test), ignore_errors=True) better_miou_test = test_iou_manager.eval()[0] fluid.dygraph.save_dygraph(model.state_dict(), 'checkpoint/DAnet_better_test_{:.4f}'.format(better_miou_test)) if __name__ == '__main__': options = Options() args = options.parse() options.print_args() main(args)