import os import paddle.v2 as paddle import paddle.v2.fluid as fluid import reader def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) / 2, groups=groups, act=None, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act) def squeeze_excitation(input, num_channels, reduction_ratio): pool = fluid.layers.pool2d( input=input, pool_size=0, pool_type='avg', global_pooling=True) squeeze = fluid.layers.fc(input=pool, size=num_channels / reduction_ratio, act='relu') excitation = fluid.layers.fc(input=squeeze, size=num_channels, act='sigmoid') scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) return scale def shortcut(input, ch_out, stride): ch_in = input.shape[1] if ch_in != ch_out: if stride == 1: filter_size = 1 else: filter_size = 3 return conv_bn_layer(input, ch_out, filter_size, stride) else: return input def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio): conv0 = conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu') conv1 = conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, groups=cardinality, act='relu') conv2 = conv_bn_layer( input=conv1, num_filters=num_filters * 2, filter_size=1, act=None) scale = squeeze_excitation( input=conv2, num_channels=num_filters * 2, reduction_ratio=reduction_ratio) short = shortcut(input, num_filters * 2, stride) return fluid.layers.elementwise_add(x=short, y=scale, act='relu') def SE_ResNeXt(input, class_dim, infer=False): cardinality = 64 reduction_ratio = 16 depth = [3, 8, 36, 3] num_filters = [128, 256, 512, 1024] conv = conv_bn_layer( input=input, num_filters=64, filter_size=3, stride=2, act='relu') conv = conv_bn_layer( input=conv, num_filters=64, filter_size=3, stride=1, act='relu') conv = conv_bn_layer( input=conv, num_filters=128, filter_size=3, stride=1, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') for block in range(len(depth)): for i in range(depth[block]): conv = bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, cardinality=cardinality, reduction_ratio=reduction_ratio) pool = fluid.layers.pool2d( input=conv, pool_size=0, pool_type='avg', global_pooling=True) if not infer: drop = fluid.layers.dropout(x=pool, dropout_prob=0.2) else: drop = pool out = fluid.layers.fc(input=drop, size=class_dim, act='softmax') return out def train(learning_rate, batch_size, num_passes, init_model=None, model_save_dir='model', parallel=True): class_dim = 1000 image_shape = [3, 224, 224] image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') if parallel: places = fluid.layers.get_places() pd = fluid.layers.ParallelDo(places) with pd.do(): image_ = pd.read_input(image) label_ = pd.read_input(label) out = SE_ResNeXt(input=image_, class_dim=class_dim) cost = fluid.layers.cross_entropy(input=out, label=label_) avg_cost = fluid.layers.mean(x=cost) accuracy = fluid.layers.accuracy(input=out, label=label_) pd.write_output(avg_cost) pd.write_output(accuracy) avg_cost, accuracy = pd() avg_cost = fluid.layers.mean(x=avg_cost) accuracy = fluid.layers.mean(x=accuracy) else: out = SE_ResNeXt(input=image, class_dim=class_dim) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) accuracy = fluid.layers.accuracy(input=out, label=label) optimizer = fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) opts = optimizer.minimize(avg_cost) inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): inference_program = fluid.io.get_inference_program([avg_cost, accuracy]) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if init_model is not None: fluid.io.load_persistables(exe, init_model) train_reader = paddle.batch(reader.train(), batch_size=batch_size) test_reader = paddle.batch(reader.test(), batch_size=batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image, label]) for pass_id in range(num_passes): for batch_id, data in enumerate(train_reader()): loss = exe.run(fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost]) print("Pass {0}, batch {1}, loss {2}".format(pass_id, batch_id, float(loss[0]))) total_loss = 0.0 total_acc = 0.0 total_batch = 0 for data in test_reader(): loss, acc = exe.run(inference_program, feed=feeder.feed(data), fetch_list=[avg_cost, accuracy]) total_loss += float(loss) total_acc += float(acc) total_batch += 1 print("End pass {0}, test_loss {1}, test_acc {2}".format( pass_id, total_loss / total_batch, total_acc / total_batch)) model_path = os.path.join(model_save_dir, str(pass_id)) fluid.io.save_inference_model(model_path, ['image'], [out], exe) if __name__ == '__main__': train( learning_rate=0.1, batch_size=8, num_passes=100, init_model=None, parallel=False)