ENV: min_subgraph_size: 3 trt_calib_mode: False cpu_threads: 1 trt_use_static: False save_img: True return_res: True print_res: True MODEL: - DetectionOp: name: det param_path: paddlecv://models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/inference.pdiparams model_path: paddlecv://models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/inference.pdmodel batch_size: 2 image_shape: [3, 640, 640] PreProcess: - Resize: interp: 2 keep_ratio: false target_size: [640, 640] - NormalizeImage: is_scale: true mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] - Permute: PostProcess: - ParserDetResults: label_list: - foreground threshold: 0.2 max_det_results: 5 Inputs: - input.image - BboxCropOp: name: crop Inputs: - input.image - det.dt_bboxes - FeatureExtractionOp: name: feature param_path: paddlecv://models/general_PPLCNet_x2_5_lite_v1.0_infer/inference.pdiparams model_path: paddlecv://models/general_PPLCNet_x2_5_lite_v1.0_infer/inference.pdmodel batch_size: 2 PreProcess: - ResizeImage: size: [224, 224] return_numpy: False interpolation: bilinear backend: cv2 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: hwc - ToCHWImage: - ExpandDim: axis: 0 PostProcess: - NormalizeFeature: - Index: dist_type: "IP" vector_path: "paddlecv://dict/pp-shitu/drink_dataset_v1.0_vector.index" id_map_path: "paddlecv://dict/pp-shitu/drink_dataset_v1.0_id_map.pkl" score_thres: 0.5 - NMS4Rec: thresh: 0.05 Inputs: - input.image - crop.crop_image - det.dt_bboxes - FeatureOutput: name: print Inputs: - input.fn - feature.dt_bboxes - feature.rec_score - feature.rec_doc