# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn from .. import PretrainedModel, register_base_model __all__ = [ 'ErnieModel', 'ErniePretrainedModel', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieForQuestionAnswering', 'ErnieForPretraining', 'ErniePretrainingCriterion' ] class ErnieEmbeddings(nn.Layer): """ Include embeddings from word, position and token_type embeddings """ def __init__(self, vocab_size, hidden_size=768, hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, pad_token_id=0): super(ErnieEmbeddings, self).__init__() self.word_embeddings = nn.Embedding( vocab_size, hidden_size, padding_idx=pad_token_id) self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) self.layer_norm = nn.LayerNorm(hidden_size) self.dropout = nn.Dropout(hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, position_ids=None): if position_ids is None: # maybe need use shape op to unify static graph and dynamic graph #seq_length = input_ids.shape[1] ones = paddle.ones_like(input_ids, dtype="int64") seq_length = paddle.cumsum(ones, axis=1) position_ids = seq_length - ones position_ids.stop_gradient = True if token_type_ids is None: token_type_ids = paddle.zeros_like(input_ids, dtype="int64") input_embedings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = input_embedings + position_embeddings + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class ErniePooler(nn.Layer): """ """ def __init__(self, hidden_size): super(ErniePooler, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class ErniePretrainedModel(PretrainedModel): """ An abstract class for pretrained ERNIE models. It provides ERNIE related `model_config_file`, `resource_files_names`, `pretrained_resource_files_map`, `pretrained_init_configuration`, `base_model_prefix` for downloading and loading pretrained models. See `PretrainedModel` for more details. """ model_config_file = "model_config.json" pretrained_init_configuration = { "ernie-1.0": { "attention_probs_dropout_prob": 0.1, "hidden_act": "relu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "max_position_embeddings": 513, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 18000, "pad_token_id": 0, }, "ernie-tiny": { "attention_probs_dropout_prob": 0.1, "hidden_act": "relu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 600, "num_attention_heads": 16, "num_hidden_layers": 3, "type_vocab_size": 2, "vocab_size": 50006, "pad_token_id": 0, }, "ernie-2.0-en": { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 4, "vocab_size": 30522, "pad_token_id": 0, }, "ernie-2.0-large-en": { "attention_probs_dropout_prob": 0.1, "intermediate_size": 4096, # special for ernie-2.0-large-en "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "type_vocab_size": 4, "vocab_size": 30522, "pad_token_id": 0, }, } resource_files_names = {"model_state": "model_state.pdparams"} pretrained_resource_files_map = { "model_state": { "ernie-1.0": "https://paddlenlp.bj.bcebos.com/models/transformers/ernie/ernie_v1_chn_base.pdparams", "ernie-tiny": "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_tiny/ernie_tiny.pdparams", "ernie-2.0-en": "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_base/ernie_v2_eng_base.pdparams", "ernie-2.0-large-en": "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_large/ernie_v2_eng_large.pdparams", } } base_model_prefix = "ernie" def init_weights(self, layer): """ Initialization hook """ if isinstance(layer, (nn.Linear, nn.Embedding)): # only support dygraph, use truncated_normal and make it inplace # and configurable later if isinstance(layer.weight, paddle.Tensor): layer.weight.set_value( paddle.tensor.normal( mean=0.0, std=self.initializer_range if hasattr(self, "initializer_range") else self.ernie.config["initializer_range"], shape=layer.weight.shape)) @register_base_model class ErnieModel(ErniePretrainedModel): """ """ def __init__(self, vocab_size, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, initializer_range=0.02, pad_token_id=0): super(ErnieModel, self).__init__() self.pad_token_id = pad_token_id self.initializer_range = initializer_range self.embeddings = ErnieEmbeddings( vocab_size, hidden_size, hidden_dropout_prob, max_position_embeddings, type_vocab_size, pad_token_id) encoder_layer = nn.TransformerEncoderLayer( hidden_size, num_attention_heads, intermediate_size, dropout=hidden_dropout_prob, activation=hidden_act, attn_dropout=attention_probs_dropout_prob, act_dropout=0) self.encoder = nn.TransformerEncoder(encoder_layer, num_hidden_layers) self.pooler = ErniePooler(hidden_size) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None): if attention_mask is None: attention_mask = paddle.unsqueeze( (input_ids == self.pad_token_id ).astype(self.pooler.dense.weight.dtype) * -1e9, axis=[1, 2]) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids) encoder_outputs = self.encoder(embedding_output, attention_mask) sequence_output = encoder_outputs pooled_output = self.pooler(sequence_output) return sequence_output, pooled_output class ErnieForSequenceClassification(ErniePretrainedModel): """ Model for sentence (pair) classification task with ERNIE. Args: ernie (ErnieModel): An instance of `ErnieModel`. num_classes (int, optional): The number of classes. Default 2 dropout (float, optional): The dropout probability for output of ERNIE. If None, use the same value as `hidden_dropout_prob` of `ErnieModel` instance `Ernie`. Default None """ def __init__(self, ernie, num_classes=2, dropout=None): super(ErnieForSequenceClassification, self).__init__() self.num_classes = num_classes self.ernie = ernie # allow ernie to be config self.dropout = nn.Dropout(dropout if dropout is not None else self.ernie.config["hidden_dropout_prob"]) self.classifier = nn.Linear(self.ernie.config["hidden_size"], num_classes) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None): _, pooled_output = self.ernie( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) return logits class ErnieForQuestionAnswering(ErniePretrainedModel): def __init__(self, ernie): super(ErnieForQuestionAnswering, self).__init__() self.ernie = ernie # allow ernie to be config self.classifier = nn.Linear(self.ernie.config["hidden_size"], 2) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None): sequence_output, _ = self.ernie( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask) logits = self.classifier(sequence_output) logits = paddle.transpose(logits, perm=[2, 0, 1]) start_logits, end_logits = paddle.unstack(x=logits, axis=0) return start_logits, end_logits class ErnieForTokenClassification(ErniePretrainedModel): def __init__(self, ernie, num_classes=2, dropout=None): super(ErnieForTokenClassification, self).__init__() self.num_classes = num_classes self.ernie = ernie # allow ernie to be config self.dropout = nn.Dropout(dropout if dropout is not None else self.ernie.config["hidden_dropout_prob"]) self.classifier = nn.Linear(self.ernie.config["hidden_size"], num_classes) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None): sequence_output, _ = self.ernie( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask) sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) return logits class ErnieForPretraining(ErniePretrainedModel): def __init__(self, ernie): super(ErnieForPretraining, self).__init__() self.ernie = ernie self.cls = ErniePretrainingHeads( self.ernie.config["hidden_size"], self.ernie.config["vocab_size"], self.ernie.config["hidden_act"], embedding_weights=self.ernie.embeddings.word_embeddings.weight) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, position_ids=None, attention_mask=None, masked_positions=None): outputs = self.ernie( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls( sequence_output, pooled_output, masked_positions) return prediction_scores, seq_relationship_score class ErniePretrainingCriterion(paddle.nn.Layer): def __init__(self, vocab_size): super(ErniePretrainingCriterion, self).__init__() self.loss_fn = paddle.nn.loss.CrossEntropyLoss(ignore_index=-1) self.vocab_size = vocab_size def forward(self, prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels, masked_lm_scale): masked_lm_loss = paddle.nn.functional.softmax_with_cross_entropy( prediction_scores, masked_lm_labels, ignore_index=-1) masked_lm_loss = masked_lm_loss / masked_lm_scale next_sentence_loss = paddle.nn.functional.softmax_with_cross_entropy( seq_relationship_score, next_sentence_labels) return paddle.sum(masked_lm_loss) + paddle.mean(next_sentence_loss)