# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import math import glob import paddle import cv2 import json from collections import defaultdict from .base import OutputBaseOp from ppcv.utils.logger import setup_logger from ppcv.core.workspace import register logger = setup_logger('KptOutput') def get_color(idx): idx = idx * 3 color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) return color def draw_kpt(image, keypoints, visual_thresh=0.6, ids=None): try: import matplotlib.pyplot as plt import matplotlib plt.switch_backend('agg') except Exception as e: print('Matplotlib not found, please install matplotlib.' 'for example: `pip install matplotlib`.') raise e image = image[:, :, ::-1] skeletons = np.array(keypoints)[0] kpt_nums = 17 if len(skeletons) > 0: kpt_nums = skeletons.shape[1] if kpt_nums == 17: #plot coco keypoint EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14), (13, 15), (14, 16), (11, 12)] else: #plot mpii keypoint EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8), (8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12), (8, 13)] NUM_EDGES = len(EDGES) colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] cmap = matplotlib.cm.get_cmap('hsv') plt.figure() color_set = None canvas = image.copy() for i in range(kpt_nums): for j in range(len(skeletons)): if skeletons[j][i, 2] < visual_thresh: continue if ids is None: color = colors[i] if color_set is None else colors[color_set[j] % len(colors)] else: color = get_color(ids[j]) cv2.circle( canvas, tuple(skeletons[j][i, 0:2].astype('int32')), 2, color, thickness=-1) to_plot = cv2.addWeighted(image, 0.3, canvas, 0.7, 0) fig = matplotlib.pyplot.gcf() stickwidth = 2 for i in range(NUM_EDGES): for j in range(len(skeletons)): edge = EDGES[i] if skeletons[j][edge[0], 2] < visual_thresh or skeletons[j][edge[ 1], 2] < visual_thresh: continue cur_canvas = canvas.copy() X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]] Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) if ids is None: color = colors[i] if color_set is None else colors[color_set[j] % len(colors)] else: color = get_color(ids[j]) cv2.fillConvexPoly(cur_canvas, polygon, color) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) return canvas @register class KptOutput(OutputBaseOp): def __init__(self, model_cfg, env_cfg): super(KptOutput, self).__init__(model_cfg, env_cfg) def __call__(self, inputs): total_res = [] for res in inputs: fn, image, keypoints, kpt_scores = res.values() res.pop('input.image') image = draw_kpt(image, keypoints) if self.frame_id != -1: res.update({'frame_id': frame_id}) logger.info(res) if self.save_img: file_name = os.path.split(fn)[-1] out_path = os.path.join(self.output_dir, file_name) logger.info('Save output image to {}'.format(out_path)) cv2.imwrite(out_path, image) if self.save_res or self.return_res: total_res.append(res) if self.save_res: res_file_name = 'kpt_output.json' out_path = os.path.join(self.output_dir, res_file_name) logger.info('Save output result to {}'.format(out_path)) with open(out_path, 'w') as f: json.dump(total_res, f) if self.return_res: return total_res return