# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/noahcao/OC_SORT/blob/master/trackers/ocsort_tracker/ocsort.py """ import numpy as np try: from filterpy.kalman import KalmanFilter except: print( 'Warning: Unable to use OC-SORT, please install filterpy, for example: `pip install filterpy`, see https://github.com/rlabbe/filterpy' ) pass from .matching.ocsort_matching import associate, linear_assignment, iou_batch __all__ = ['OCSORTTracker'] def k_previous_obs(observations, cur_age, k): if len(observations) == 0: return [-1, -1, -1, -1, -1] for i in range(k): dt = k - i if cur_age - dt in observations: return observations[cur_age - dt] max_age = max(observations.keys()) return observations[max_age] def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h # scale is just area r = w / float(h + 1e-6) return np.array([x, y, s, r]).reshape((4, 1)) def convert_x_to_bbox(x, score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if (score == None): return np.array( [x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4)) else: score = np.array([score]) return np.array([ x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score ]).reshape((1, 5)) def speed_direction(bbox1, bbox2): cx1, cy1 = (bbox1[0] + bbox1[2]) / 2.0, (bbox1[1] + bbox1[3]) / 2.0 cx2, cy2 = (bbox2[0] + bbox2[2]) / 2.0, (bbox2[1] + bbox2[3]) / 2.0 speed = np.array([cy2 - cy1, cx2 - cx1]) norm = np.sqrt((cy2 - cy1)**2 + (cx2 - cx1)**2) + 1e-6 return speed / norm class KalmanBoxTracker(object): """ This class represents the internal state of individual tracked objects observed as bbox. Args: bbox (np.array): bbox in [x1,y1,x2,y2,score] format. delta_t (int): delta_t of previous observation """ count = 0 def __init__(self, bbox, delta_t=3): try: from filterpy.kalman import KalmanFilter except Exception as e: raise RuntimeError( 'Unable to use OC-SORT, please install filterpy, for example: `pip install filterpy`, see https://github.com/rlabbe/filterpy' ) self.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]]) self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]]) self.kf.R[2:, 2:] *= 10. self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1, -1] *= 0.01 self.kf.Q[4:, 4:] *= 0.01 self.score = bbox[4] self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 """ NOTE: [-1,-1,-1,-1,-1] is a compromising placeholder for non-observation status, the same for the return of function k_previous_obs. It is ugly and I do not like it. But to support generate observation array in a fast and unified way, which you would see below k_observations = np.array([k_previous_obs(...]]), let's bear it for now. """ self.last_observation = np.array([-1, -1, -1, -1, -1]) # placeholder self.observations = dict() self.history_observations = [] self.velocity = None self.delta_t = delta_t def update(self, bbox): """ Updates the state vector with observed bbox. """ if bbox is not None: if self.last_observation.sum() >= 0: # no previous observation previous_box = None for i in range(self.delta_t): dt = self.delta_t - i if self.age - dt in self.observations: previous_box = self.observations[self.age - dt] break if previous_box is None: previous_box = self.last_observation """ Estimate the track speed direction with observations \Delta t steps away """ self.velocity = speed_direction(previous_box, bbox) """ Insert new observations. This is a ugly way to maintain both self.observations and self.history_observations. Bear it for the moment. """ self.last_observation = bbox self.observations[self.age] = bbox self.history_observations.append(bbox) self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) else: self.kf.update(bbox) def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if ((self.kf.x[6] + self.kf.x[2]) <= 0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if (self.time_since_update > 0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x, score=self.score)) return self.history[-1] def get_state(self): return convert_x_to_bbox(self.kf.x, score=self.score) class OCSORTTracker(object): """ OCSORT tracker, support single class Args: det_thresh (float): threshold of detection score max_age (int): maximum number of missed misses before a track is deleted min_hits (int): minimum hits for associate iou_threshold (float): iou threshold for associate delta_t (int): delta_t of previous observation inertia (float): vdc_weight of angle_diff_cost for associate vertical_ratio (float): w/h, the vertical ratio of the bbox to filter bad results. If set <= 0 means no need to filter bboxes,usually set 1.6 for pedestrian tracking. min_box_area (int): min box area to filter out low quality boxes use_byte (bool): Whether use ByteTracker, default False """ def __init__(self, det_thresh=0.6, max_age=30, min_hits=3, iou_threshold=0.3, delta_t=3, inertia=0.2, vertical_ratio=-1, min_box_area=0, use_byte=False): self.det_thresh = det_thresh self.max_age = max_age self.min_hits = min_hits self.iou_threshold = iou_threshold self.delta_t = delta_t self.inertia = inertia self.vertical_ratio = vertical_ratio self.min_box_area = min_box_area self.use_byte = use_byte self.trackers = [] self.frame_count = 0 KalmanBoxTracker.count = 0 def update(self, pred_dets, pred_embs=None): """ Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512], default as None. Return: tracking boxes (np.array): [M, 6], means 'x0, y0, x1, y1, score, id'. """ if pred_dets is None: return np.empty((0, 6)) self.frame_count += 1 bboxes = pred_dets[:, 2:] scores = pred_dets[:, 1:2] dets = np.concatenate((bboxes, scores), axis=1) scores = scores.squeeze(-1) inds_low = scores > 0.1 inds_high = scores < self.det_thresh inds_second = np.logical_and(inds_low, inds_high) # self.det_thresh > score > 0.1, for second matching dets_second = dets[inds_second] # detections for second matching remain_inds = scores > self.det_thresh dets = dets[remain_inds] # get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) to_del = [] ret = [] for t, trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if np.any(np.isnan(pos)): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) velocities = np.array([ trk.velocity if trk.velocity is not None else np.array((0, 0)) for trk in self.trackers ]) last_boxes = np.array([trk.last_observation for trk in self.trackers]) k_observations = np.array([ k_previous_obs(trk.observations, trk.age, self.delta_t) for trk in self.trackers ]) """ First round of association """ matched, unmatched_dets, unmatched_trks = associate( dets, trks, self.iou_threshold, velocities, k_observations, self.inertia) for m in matched: self.trackers[m[1]].update(dets[m[0], :]) """ Second round of associaton by OCR """ # BYTE association if self.use_byte and len(dets_second) > 0 and unmatched_trks.shape[ 0] > 0: u_trks = trks[unmatched_trks] iou_left = iou_batch( dets_second, u_trks) # iou between low score detections and unmatched tracks iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ matched_indices = linear_assignment(-iou_left) to_remove_trk_indices = [] for m in matched_indices: det_ind, trk_ind = m[0], unmatched_trks[m[1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update(dets_second[det_ind, :]) to_remove_trk_indices.append(trk_ind) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0: left_dets = dets[unmatched_dets] left_trks = last_boxes[unmatched_trks] iou_left = iou_batch(left_dets, left_trks) iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ rematched_indices = linear_assignment(-iou_left) to_remove_det_indices = [] to_remove_trk_indices = [] for m in rematched_indices: det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[ 1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update(dets[det_ind, :]) to_remove_det_indices.append(det_ind) to_remove_trk_indices.append(trk_ind) unmatched_dets = np.setdiff1d(unmatched_dets, np.array(to_remove_det_indices)) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) for m in unmatched_trks: self.trackers[m].update(None) # create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i, :], delta_t=self.delta_t) self.trackers.append(trk) i = len(self.trackers) for trk in reversed(self.trackers): if trk.last_observation.sum() < 0: d = trk.get_state()[0] else: d = trk.last_observation # tlbr + score if (trk.time_since_update < 1) and ( trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): # +1 as MOT benchmark requires positive ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1)) i -= 1 # remove dead tracklet if (trk.time_since_update > self.max_age): self.trackers.pop(i) if (len(ret) > 0): return np.concatenate(ret) return np.empty((0, 6)) def tracking(self, pred_dets, pred_embs, output_keys): online_targets = self.update(pred_dets, pred_embs) tracking_bboxes, tracking_scores = [], [] tracking_ids, tracking_cls_ids = [], [] for t in online_targets: x1, y1, x2, y2 = t[:4] w, h = x2 - x1, y2 - y1 tscore = float(t[4]) tid = int(t[5]) if w * h <= self.min_box_area: continue if self.vertical_ratio > 0 and w / h > self.vertical_ratio: continue if w * h > 0: tracking_bboxes.append([x1, y1, x2, y2]) tracking_scores.append(tscore) tracking_ids.append(tid) # only support 1 class now tracking_cls_ids.append(0) tracking_outs = { output_keys[0]: tracking_bboxes, output_keys[1]: tracking_scores, output_keys[2]: tracking_ids, output_keys[3]: tracking_cls_ids } return tracking_outs