import os, sys import gzip import paddle.v2 as paddle import numpy as np import functools import argparse def lambda_rank(input_dim): """ lambda_rank is a Listwise rank model, the input data and label must be sequences. https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf parameters : input_dim, one document's dense feature vector dimension format of the dense_vector_sequence: [[f, ...], [f, ...], ...], f is a float or an int number """ label = paddle.layer.data("label", paddle.data_type.dense_vector_sequence(1)) data = paddle.layer.data("data", paddle.data_type.dense_vector_sequence(input_dim)) # hidden layer hd1 = paddle.layer.fc( input=data, size=128, act=paddle.activation.Tanh(), param_attr=paddle.attr.Param(initial_std=0.01)) hd2 = paddle.layer.fc( input=hd1, size=10, act=paddle.activation.Tanh(), param_attr=paddle.attr.Param(initial_std=0.01)) output = paddle.layer.fc( input=hd2, size=1, act=paddle.activation.Linear(), param_attr=paddle.attr.Param(initial_std=0.01)) # evaluator evaluator = paddle.evaluator.auc(input=output, label=label) # cost layer cost = paddle.layer.lambda_cost( input=output, score=label, NDCG_num=6, max_sort_size=-1) return cost, output def train_lambda_rank(num_passes): # listwise input sequence fill_default_train = functools.partial( paddle.dataset.mq2007.train, format="listwise") fill_default_test = functools.partial( paddle.dataset.mq2007.test, format="listwise") train_reader = paddle.batch( paddle.reader.shuffle(fill_default_train, buf_size=100), batch_size=32) test_reader = paddle.batch(fill_default_test, batch_size=32) # mq2007 input_dim = 46, dense format input_dim = 46 cost, output = lambda_rank(input_dim) parameters = paddle.parameters.create(cost) trainer = paddle.trainer.SGD( cost=cost, parameters=parameters, update_equation=paddle.optimizer.Adam(learning_rate=1e-4)) # Define end batch and end pass event handler def event_handler(event): if isinstance(event, paddle.event.EndIteration): print "Pass %d Batch %d Cost %.9f" % (event.pass_id, event.batch_id, event.cost) if isinstance(event, paddle.event.EndPass): result = trainer.test(reader=test_reader, feeding=feeding) print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) with gzip.open("lambda_rank_params_%d.tar.gz" % (event.pass_id), "w") as f: parameters.to_tar(f) feeding = {"label": 0, "data": 1} trainer.train( reader=train_reader, event_handler=event_handler, feeding=feeding, num_passes=num_passes) def lambda_rank_infer(pass_id): """ lambda_rank model inference interface parameters: pass_id : inference model in pass_id """ print "Begin to Infer..." input_dim = 46 output = lambda_rank(input_dim) parameters = paddle.parameters.Parameters.from_tar( gzip.open("lambda_rank_params_%d.tar.gz" % (pass_id - 1))) infer_query_id = None infer_data = [] infer_data_num = 1 fill_default_test = functools.partial( paddle.dataset.mq2007.test, format="listwise") for label, querylist in fill_default_test(): infer_data.append(querylist) if len(infer_data) == infer_data_num: break # predict score of infer_data document. Re-sort the document base on predict score # in descending order. then we build the ranking documents predicitons = paddle.infer( output_layer=output, parameters=parameters, input=infer_data) for i, score in enumerate(predicitons): print i, score if __name__ == '__main__': parser = argparse.ArgumentParser(description='LambdaRank demo') parser.add_argument("--run_type", type=str, help="run type is train|infer") parser.add_argument( "--num_passes", type=int, help="num of passes in train| infer pass number of model") args = parser.parse_args() paddle.init(use_gpu=False, trainer_count=1) if args.run_type == "train": train_lambda_rank(args.num_passes) elif args.run_type == "infer": lambda_rank_infer(pass_id=args.num_passes - 1)