# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import ast import math import argparse import numpy as np import paddle from data import LacDataset from model import BiGruCrf from paddlenlp.data import Pad, Tuple, Stack from paddlenlp.layers.crf import LinearChainCrfLoss, ViterbiDecoder from paddlenlp.metrics import ChunkEvaluator # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--root", type=str, default=None, help="The folder where the dataset is located.") parser.add_argument("--init_checkpoint", type=str, default=None, help="Path to init model.") parser.add_argument("--model_save_dir", type=str, default=None, help="The model will be saved in this path.") parser.add_argument("--epochs", type=int, default=10, help="Corpus iteration num.") parser.add_argument("--batch_size", type=int, default=300, help="The number of sequences contained in a mini-batch.") parser.add_argument("--max_seq_len", type=int, default=64, help="Number of words of the longest seqence.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="If set, use GPU for training.") parser.add_argument("--base_lr", type=float, default=0.001, help="The basic learning rate that affects the entire network.") parser.add_argument("--emb_dim", type=int, default=128, help="The dimension in which a word is embedded.") parser.add_argument("--hidden_size", type=int, default=128, help="The number of hidden nodes in the GRU layer.") args = parser.parse_args() # yapf: enable def train(args): if args.use_gpu: place = paddle.CUDAPlace(paddle.distributed.ParallelEnv().dev_id) paddle.set_device("gpu") else: place = paddle.CPUPlace() paddle.set_device("cpu") # create dataset. train_dataset = LacDataset(args.root, mode='train') test_dataset = LacDataset(args.root, mode='test') batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=0), # word_ids Stack(), # length Pad(axis=0, pad_val=0), # label_ids ): fn(samples) # Create sampler for dataloader train_sampler = paddle.io.DistributedBatchSampler( dataset=train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True) train_loader = paddle.io.DataLoader( dataset=train_dataset, batch_sampler=train_sampler, places=place, return_list=True, collate_fn=batchify_fn) test_sampler = paddle.io.BatchSampler( dataset=test_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True) test_loader = paddle.io.DataLoader( dataset=test_dataset, batch_sampler=test_sampler, places=place, return_list=True, collate_fn=batchify_fn) # Define the model netword and its loss network = BiGruCrf(args.emb_dim, args.hidden_size, train_dataset.vocab_size, train_dataset.num_labels) model = paddle.Model(network) # Prepare optimizer, loss and metric evaluator optimizer = paddle.optimizer.Adam( learning_rate=args.base_lr, parameters=model.parameters()) crf_loss = LinearChainCrfLoss(network.crf.transitions) chunk_evaluator = ChunkEvaluator( int(math.ceil((train_dataset.num_labels + 1) / 2.0)), "IOB") # + 1 for SOS and EOS model.prepare(optimizer, crf_loss, chunk_evaluator) if args.init_checkpoint: model.load(args.init_checkpoint) # Start training callback = paddle.callbacks.ProgBarLogger(log_freq=10, verbose=3) model.fit(train_data=train_loader, eval_data=test_loader, batch_size=args.batch_size, epochs=args.epochs, eval_freq=1, log_freq=10, save_dir=args.model_save_dir, save_freq=1, drop_last=True, shuffle=True, callbacks=callback) if __name__ == "__main__": print(args) train(args)