# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import math import time import argparse import functools import numpy as np import paddle import paddle.fluid as fluid import models import reader from utility import add_arguments, print_arguments, check_cuda from utility import fmt_time, recall_topk # yapf: disable parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg('model', str, "ResNet50", "Set the network to use.") add_arg('embedding_size', int, 0, "Embedding size.") add_arg('batch_size', int, 10, "Minibatch size.") add_arg('image_shape', str, "3,224,224", "Input image size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def eval(args): # parameters from arguments model_name = args.model pretrained_model = args.pretrained_model image_shape = [int(m) for m in args.image_shape.split(",")] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.data(name='image', shape=[None] + image_shape, dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') test_loader = fluid.io.DataLoader.from_generator( feed_list=[image, label], capacity=64, use_double_buffer=True, iterable=True) # model definition model = models.__dict__[model_name]() out = model.net(input=image, embedding_size=args.embedding_size) test_program = fluid.default_main_program().clone(for_test=True) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.load(program=test_program, model_path=pretrained_model, executor=exe) test_loader.set_sample_generator( reader.test(args), batch_size=args.batch_size, drop_last=False, places=place) fetch_list = [out.name] f, l = [], [] for batch_id, data in enumerate(test_loader()): t1 = time.time() [feas] = exe.run(test_program, fetch_list=fetch_list, feed=data) label = np.asarray(data[0]['label']) label = np.squeeze(label) f.append(feas) l.append(label) t2 = time.time() period = t2 - t1 if batch_id % 20 == 0: print("[%s] testbatch %d, time %2.2f sec" % \ (fmt_time(), batch_id, period)) f = np.vstack(f) l = np.hstack(l) recall = recall_topk(f, l, k=1) print("[%s] End test %d, test_recall %.5f" % (fmt_time(), len(f), recall)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) check_cuda(args.use_gpu) eval(args) if __name__ == '__main__': import paddle paddle.enable_static() main()