#!/bin/bash -ex #Training details export FLAGS_conv_workspace_size_limit=4000 #MB export FLAGS_cudnn_exhaustive_search=1 export FLAGS_cudnn_batchnorm_spatial_persistent=1 DATA_DIR="Your image dataset path, e.g. ./data/ILSVRC2012/" DATA_FORMAT="NHWC" USE_AMP=true #whether to use amp USE_DALI=true USE_ADDTO=true if ${USE_ADDTO} ;then export FLAGS_max_inplace_grad_add=8 fi if ${USE_DALI}; then export FLAGS_fraction_of_gpu_memory_to_use=0.8 fi python train.py \ --model=ResNet200_vd \ --data_dir=${DATA_DIR} \ --batch_size=64 \ --num_epochs=200 \ --total_images=1281167 \ --image_shape 4 224 224 \ --class_dim=1000 \ --print_step=10 \ --model_save_dir=output/ \ --lr_strategy=cosine_decay \ --use_amp=${USE_AMP} \ --scale_loss=128.0 \ --use_dynamic_loss_scaling=true \ --data_format=${DATA_FORMAT} \ --fuse_elewise_add_act_ops=true \ --fuse_bn_act_ops=true \ --fuse_bn_add_act_ops=true \ --enable_addto=${USE_ADDTO} \ --validate=true \ --is_profiler=false \ --profiler_path=profile/ \ --reader_thread=10 \ --reader_buf_size=4000 \ --use_dali=${USE_DALI} \ --lr=0.1 \ --l2_decay=1e-4 \ --use_label_smoothing=True \ --label_smoothing_epsilon=0.1