from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid __all__ = ["VGGNet", "VGG11", "VGG13", "VGG16", "VGG19"] train_parameters = { "input_size": [3, 224, 224], "input_mean": [0.485, 0.456, 0.406], "input_std": [0.229, 0.224, 0.225], "learning_strategy": { "name": "piecewise_decay", "batch_size": 256, "epochs": [30, 60, 90], "steps": [0.1, 0.01, 0.001, 0.0001] } } class VGGNet(): def __init__(self, layers=16, name=""): self.params = train_parameters self.layers = layers self.name=name def net(self, input, class_dim=1000): layers = self.layers vgg_spec = { 11: ([1, 1, 2, 2, 2]), 13: ([2, 2, 2, 2, 2]), 16: ([2, 2, 3, 3, 3]), 19: ([2, 2, 4, 4, 4]) } assert layers in vgg_spec.keys(), \ "supported layers are {} but input layer is {}".format(vgg_spec.keys(), layers) nums = vgg_spec[layers] conv1, res = self.conv_block(input, 64, nums[0], name=self.name+"_conv1_") conv2, res = self.conv_block(res, 128, nums[1], name=self.name+"_conv2_") conv3, res = self.conv_block(res, 256, nums[2], name=self.name+"_conv3_") conv4, res = self.conv_block(res, 512, nums[3], name=self.name+"_conv4_") conv5, res = self.conv_block(res, 512, nums[4], name=self.name+"_conv5_") if self.layers == 16: return [conv1, conv2, conv3] elif self.layers == 19: return [conv1, conv2, conv3, conv4, conv5] def conv_block(self, input, num_filter, groups, name=""): conv = input for i in range(groups): conv = fluid.layers.conv2d( input=conv, num_filters=num_filter, filter_size=3, stride=1, padding=1, act='relu', param_attr=fluid.param_attr.ParamAttr( name=name + str(i + 1) + "_weights", trainable=False), bias_attr=False ) if i == 0: relu_res = conv return relu_res, fluid.layers.pool2d( input=conv, pool_size=2, pool_type='max', pool_stride=2) def load_vars(self, exe, program, pretrained_model): vars = [] for var in program.list_vars(): if fluid.io.is_parameter(var) and var.name.startswith("vgg"): vars.append(var) print(var.name) fluid.io.load_vars(exe, pretrained_model, program, vars) def VGG11(): model = VGGNet(layers=11) return model def VGG13(): model = VGGNet(layers=13) return model def VGG16(): model = VGGNet(layers=16, name="vgg16") return model def VGG19(name="vgg19"): model = VGGNet(layers=19, name=name) return model