# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.initializer import Xavier from paddle.fluid.initializer import Constant from paddle.fluid.initializer import Bilinear from paddle.fluid.regularizer import L2Decay def conv_bn(input, filter, ksize, stride, padding, act='relu', bias_attr=False): p_attr = ParamAttr(learning_rate=1., regularizer=L2Decay(0.)) b_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.)) conv = fluid.layers.conv2d( input=input, filter_size=ksize, num_filters=filter, stride=stride, padding=padding, act=None, bias_attr=bias_attr) return fluid.layers.batch_norm( input=conv, act=act, epsilon=0.001, momentum=0.999, param_attr=p_attr, bias_attr=b_attr) def conv_block(input, groups, filters, ksizes, strides=None, with_pool=True): assert len(filters) == groups assert len(ksizes) == groups strides = [1] * groups if strides is None else strides w_attr = ParamAttr(learning_rate=1., initializer=Xavier()) b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.)) conv = input for i in six.moves.xrange(groups): conv = fluid.layers.conv2d( input=conv, num_filters=filters[i], filter_size=ksizes[i], stride=strides[i], padding=(ksizes[i] - 1) // 2, param_attr=w_attr, bias_attr=b_attr, act='relu') if with_pool: pool = fluid.layers.pool2d( input=conv, pool_size=2, pool_type='max', pool_stride=2, ceil_mode=True) return conv, pool else: return conv class PyramidBox(object): def __init__(self, data_shape=None, image=None, face_box=None, head_box=None, gt_label=None, use_transposed_conv2d=True, is_infer=False, sub_network=False): """ TODO(qingqing): add comments. """ self.data_shape = data_shape self.min_sizes = [16., 32., 64., 128., 256., 512.] self.steps = [4., 8., 16., 32., 64., 128.] self.use_transposed_conv2d = use_transposed_conv2d self.is_infer = is_infer self.sub_network = sub_network self.image = image self.face_box = face_box self.head_box = head_box self.gt_label = gt_label # the base network is VGG with atrous layers if is_infer: self._input() self._vgg() if sub_network: self._low_level_fpn() self._cpm_module() self._pyramidbox() else: self._vgg_ssd() def _input(self): self.image = fluid.layers.data( name='image', shape=self.data_shape, dtype='float32') if not self.is_infer: self.face_box = fluid.layers.data( name='face_box', shape=[4], dtype='float32', lod_level=1) self.head_box = fluid.layers.data( name='head_box', shape=[4], dtype='float32', lod_level=1) self.gt_label = fluid.layers.data( name='gt_label', shape=[1], dtype='int32', lod_level=1) def _vgg(self): self.conv1, self.pool1 = conv_block(self.image, 2, [64] * 2, [3] * 2) self.conv2, self.pool2 = conv_block(self.pool1, 2, [128] * 2, [3] * 2) #priorbox min_size is 16 self.conv3, self.pool3 = conv_block(self.pool2, 3, [256] * 3, [3] * 3) #priorbox min_size is 32 self.conv4, self.pool4 = conv_block(self.pool3, 3, [512] * 3, [3] * 3) #priorbox min_size is 64 self.conv5, self.pool5 = conv_block(self.pool4, 3, [512] * 3, [3] * 3) # fc6 and fc7 in paper, priorbox min_size is 128 self.conv6 = conv_block( self.pool5, 2, [1024, 1024], [3, 1], with_pool=False) # conv6_1 and conv6_2 in paper, priorbox min_size is 256 self.conv7 = conv_block( self.conv6, 2, [256, 512], [1, 3], [1, 2], with_pool=False) # conv7_1 and conv7_2 in paper, priorbox mini_size is 512 self.conv8 = conv_block( self.conv7, 2, [128, 256], [1, 3], [1, 2], with_pool=False) def _low_level_fpn(self): """ Low-level feature pyramid network. """ def fpn(up_from, up_to): ch = up_to.shape[1] b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.)) conv1 = fluid.layers.conv2d( up_from, ch, 1, act='relu', bias_attr=b_attr) if self.use_transposed_conv2d: w_attr = ParamAttr( learning_rate=0., regularizer=L2Decay(0.), initializer=Bilinear()) upsampling = fluid.layers.conv2d_transpose( conv1, ch, output_size=None, filter_size=4, padding=1, stride=2, groups=ch, param_attr=w_attr, bias_attr=False, use_cudnn=False) else: upsampling = fluid.layers.resize_bilinear( conv1, out_shape=up_to.shape[2:]) conv2 = fluid.layers.conv2d( up_to, ch, 1, act='relu', bias_attr=b_attr) if self.is_infer: upsampling = fluid.layers.crop(upsampling, shape=conv2) # eltwise mul conv_fuse = upsampling * conv2 return conv_fuse self.lfpn2_on_conv5 = fpn(self.conv6, self.conv5) self.lfpn1_on_conv4 = fpn(self.lfpn2_on_conv5, self.conv4) self.lfpn0_on_conv3 = fpn(self.lfpn1_on_conv4, self.conv3) def _cpm_module(self): """ Context-sensitive Prediction Module """ def cpm(input): # residual branch1 = conv_bn(input, 1024, 1, 1, 0, None) branch2a = conv_bn(input, 256, 1, 1, 0, act='relu') branch2b = conv_bn(branch2a, 256, 3, 1, 1, act='relu') branch2c = conv_bn(branch2b, 1024, 1, 1, 0, None) sum = branch1 + branch2c rescomb = fluid.layers.relu(x=sum) # ssh b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.)) ssh_1 = fluid.layers.conv2d(rescomb, 256, 3, 1, 1, bias_attr=b_attr) ssh_dimred = fluid.layers.conv2d( rescomb, 128, 3, 1, 1, act='relu', bias_attr=b_attr) ssh_2 = fluid.layers.conv2d( ssh_dimred, 128, 3, 1, 1, bias_attr=b_attr) ssh_3a = fluid.layers.conv2d( ssh_dimred, 128, 3, 1, 1, act='relu', bias_attr=b_attr) ssh_3b = fluid.layers.conv2d(ssh_3a, 128, 3, 1, 1, bias_attr=b_attr) ssh_concat = fluid.layers.concat([ssh_1, ssh_2, ssh_3b], axis=1) ssh_out = fluid.layers.relu(x=ssh_concat) return ssh_out self.ssh_conv3 = cpm(self.lfpn0_on_conv3) self.ssh_conv4 = cpm(self.lfpn1_on_conv4) self.ssh_conv5 = cpm(self.lfpn2_on_conv5) self.ssh_conv6 = cpm(self.conv6) self.ssh_conv7 = cpm(self.conv7) self.ssh_conv8 = cpm(self.conv8) def _l2_norm_scale(self, input, init_scale=1.0, channel_shared=False): from paddle.fluid.layer_helper import LayerHelper helper = LayerHelper("Scale") l2_norm = fluid.layers.l2_normalize( input, axis=1) # l2 norm along channel shape = [1] if channel_shared else [input.shape[1]] scale = helper.create_parameter( attr=helper.param_attr, shape=shape, dtype=input.dtype, default_initializer=Constant(init_scale)) out = fluid.layers.elementwise_mul( x=l2_norm, y=scale, axis=-1 if channel_shared else 1) return out def _pyramidbox(self): """ Get prior-boxes and pyramid-box """ self.ssh_conv3_norm = self._l2_norm_scale( self.ssh_conv3, init_scale=10.) self.ssh_conv4_norm = self._l2_norm_scale(self.ssh_conv4, init_scale=8.) self.ssh_conv5_norm = self._l2_norm_scale(self.ssh_conv5, init_scale=5.) def permute_and_reshape(input, last_dim): trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1]) compile_shape = [ trans.shape[0], np.prod(trans.shape[1:]) // last_dim, last_dim ] run_shape = fluid.layers.assign( np.array([0, -1, last_dim]).astype("int32")) return fluid.layers.reshape( trans, shape=compile_shape, actual_shape=run_shape) face_locs, face_confs = [], [] head_locs, head_confs = [], [] boxes, vars = [], [] b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.)) mbox_loc = fluid.layers.conv2d( self.ssh_conv3_norm, 8, 3, 1, 1, bias_attr=b_attr) face_loc, head_loc = fluid.layers.split( mbox_loc, num_or_sections=2, dim=1) face_loc = permute_and_reshape(face_loc, 4) if not self.is_infer: head_loc = permute_and_reshape(head_loc, 4) mbox_conf = fluid.layers.conv2d( self.ssh_conv3_norm, 8, 3, 1, 1, bias_attr=b_attr) face_conf3, face_conf1, head_conf3, head_conf1 = fluid.layers.split( mbox_conf, num_or_sections=[3, 1, 3, 1], dim=1) face_conf3_maxin = fluid.layers.reduce_max( face_conf3, dim=1, keep_dim=True) face_conf = fluid.layers.concat([face_conf3_maxin, face_conf1], axis=1) face_conf = permute_and_reshape(face_conf, 2) if not self.is_infer: head_conf3_maxin = fluid.layers.reduce_max( head_conf3, dim=1, keep_dim=True) head_conf = fluid.layers.concat( [head_conf3_maxin, head_conf1], axis=1) head_conf = permute_and_reshape(head_conf, 2) face_locs.append(face_loc) face_confs.append(face_conf) if not self.is_infer: head_locs.append(head_loc) head_confs.append(head_conf) box, var = fluid.layers.prior_box( self.ssh_conv3_norm, self.image, min_sizes=[16.], steps=[4.] * 2, aspect_ratios=[1.], clip=False, flip=True, offset=0.5) box = fluid.layers.reshape(box, shape=[-1, 4]) var = fluid.layers.reshape(var, shape=[-1, 4]) boxes.append(box) vars.append(var) inputs = [ self.ssh_conv4_norm, self.ssh_conv5_norm, self.ssh_conv6, self.ssh_conv7, self.ssh_conv8 ] for i, input in enumerate(inputs): mbox_loc = fluid.layers.conv2d(input, 8, 3, 1, 1, bias_attr=b_attr) face_loc, head_loc = fluid.layers.split( mbox_loc, num_or_sections=2, dim=1) face_loc = permute_and_reshape(face_loc, 4) if not self.is_infer: head_loc = permute_and_reshape(head_loc, 4) mbox_conf = fluid.layers.conv2d(input, 6, 3, 1, 1, bias_attr=b_attr) face_conf1, face_conf3, head_conf = fluid.layers.split( mbox_conf, num_or_sections=[1, 3, 2], dim=1) face_conf3_maxin = fluid.layers.reduce_max( face_conf3, dim=1, keep_dim=True) face_conf = fluid.layers.concat( [face_conf1, face_conf3_maxin], axis=1) face_conf = permute_and_reshape(face_conf, 2) if not self.is_infer: head_conf = permute_and_reshape(head_conf, 2) face_locs.append(face_loc) face_confs.append(face_conf) if not self.is_infer: head_locs.append(head_loc) head_confs.append(head_conf) box, var = fluid.layers.prior_box( input, self.image, min_sizes=[self.min_sizes[i + 1]], steps=[self.steps[i + 1]] * 2, aspect_ratios=[1.], clip=False, flip=True, offset=0.5) box = fluid.layers.reshape(box, shape=[-1, 4]) var = fluid.layers.reshape(var, shape=[-1, 4]) boxes.append(box) vars.append(var) self.face_mbox_loc = fluid.layers.concat(face_locs, axis=1) self.face_mbox_conf = fluid.layers.concat(face_confs, axis=1) if not self.is_infer: self.head_mbox_loc = fluid.layers.concat(head_locs, axis=1) self.head_mbox_conf = fluid.layers.concat(head_confs, axis=1) self.prior_boxes = fluid.layers.concat(boxes) self.box_vars = fluid.layers.concat(vars) def _vgg_ssd(self): self.conv3_norm = self._l2_norm_scale(self.conv3, init_scale=10.) self.conv4_norm = self._l2_norm_scale(self.conv4, init_scale=8.) self.conv5_norm = self._l2_norm_scale(self.conv5, init_scale=5.) def permute_and_reshape(input, last_dim): trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1]) compile_shape = [ trans.shape[0], np.prod(trans.shape[1:]) // last_dim, last_dim ] run_shape = fluid.layers.assign( np.array([0, -1, last_dim]).astype("int32")) return fluid.layers.reshape( trans, shape=compile_shape, actual_shape=run_shape) locs, confs = [], [] boxes, vars = [], [] b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.)) # conv3 mbox_loc = fluid.layers.conv2d( self.conv3_norm, 4, 3, 1, 1, bias_attr=b_attr) loc = permute_and_reshape(mbox_loc, 4) mbox_conf = fluid.layers.conv2d( self.conv3_norm, 4, 3, 1, 1, bias_attr=b_attr) conf1, conf3 = fluid.layers.split( mbox_conf, num_or_sections=[1, 3], dim=1) conf3_maxin = fluid.layers.reduce_max(conf3, dim=1, keep_dim=True) conf = fluid.layers.concat([conf1, conf3_maxin], axis=1) conf = permute_and_reshape(conf, 2) box, var = fluid.layers.prior_box( self.conv3_norm, self.image, min_sizes=[16.], steps=[4, 4], aspect_ratios=[1.], clip=False, flip=True, offset=0.5) box = fluid.layers.reshape(box, shape=[-1, 4]) var = fluid.layers.reshape(var, shape=[-1, 4]) locs.append(loc) confs.append(conf) boxes.append(box) vars.append(var) min_sizes = [32., 64., 128., 256., 512.] steps = [8., 16., 32., 64., 128.] inputs = [ self.conv4_norm, self.conv5_norm, self.conv6, self.conv7, self.conv8 ] for i, input in enumerate(inputs): mbox_loc = fluid.layers.conv2d(input, 4, 3, 1, 1, bias_attr=b_attr) loc = permute_and_reshape(mbox_loc, 4) mbox_conf = fluid.layers.conv2d(input, 2, 3, 1, 1, bias_attr=b_attr) conf = permute_and_reshape(mbox_conf, 2) box, var = fluid.layers.prior_box( input, self.image, min_sizes=[min_sizes[i]], steps=[steps[i]] * 2, aspect_ratios=[1.], clip=False, flip=True, offset=0.5) box = fluid.layers.reshape(box, shape=[-1, 4]) var = fluid.layers.reshape(var, shape=[-1, 4]) locs.append(loc) confs.append(conf) boxes.append(box) vars.append(var) self.face_mbox_loc = fluid.layers.concat(locs, axis=1) self.face_mbox_conf = fluid.layers.concat(confs, axis=1) self.prior_boxes = fluid.layers.concat(boxes) self.box_vars = fluid.layers.concat(vars) def vgg_ssd_loss(self): loss = fluid.layers.ssd_loss( self.face_mbox_loc, self.face_mbox_conf, self.face_box, self.gt_label, self.prior_boxes, self.box_vars, overlap_threshold=0.35, neg_overlap=0.35) loss = fluid.layers.reduce_sum(loss) loss.persistable = True return loss def train(self): face_loss = fluid.layers.ssd_loss( self.face_mbox_loc, self.face_mbox_conf, self.face_box, self.gt_label, self.prior_boxes, self.box_vars, overlap_threshold=0.35, neg_overlap=0.35) face_loss.persistable = True head_loss = fluid.layers.ssd_loss( self.head_mbox_loc, self.head_mbox_conf, self.head_box, self.gt_label, self.prior_boxes, self.box_vars, overlap_threshold=0.35, neg_overlap=0.35) head_loss.persistable = True face_loss = fluid.layers.reduce_sum(face_loss) face_loss.persistable = True head_loss = fluid.layers.reduce_sum(head_loss) head_loss.persistable = True total_loss = face_loss + head_loss total_loss.persistable = True return face_loss, head_loss, total_loss def infer(self, main_program=None): if main_program is None: test_program = fluid.default_main_program().clone(for_test=True) else: test_program = main_program.clone(for_test=True) with fluid.program_guard(test_program): face_nmsed_out = fluid.layers.detection_output( self.face_mbox_loc, self.face_mbox_conf, self.prior_boxes, self.box_vars, nms_threshold=0.3, nms_top_k=5000, keep_top_k=750, score_threshold=0.01) return test_program, face_nmsed_out