# 文本匹配 **文本匹配一直是自然语言处理(NLP)领域一个基础且重要的方向,一般研究两段文本之间的关系。文本相似度计算、自然语言推理、问答系统、信息检索等,都可以看作针对不同数据和场景的文本匹配应用。这些自然语言处理任务在很大程度上都可以抽象成文本匹配问题,比如信息检索可以归结为搜索词和文档资源的匹配,问答系统可以归结为问题和候选答案的匹配,复述问题可以归结为两个同义句的匹配,对话系统可以归结为前一句对话和回复的匹配,机器翻译则可以归结为两种语言的匹配。**



文本匹配任务数据每一个样本通常由两个文本组成(query,title)。类别形式为0或1,0表示query与title不匹配; 1表示匹配。 该项目展示了使用传统的[SimNet](./simnet) 和 [SentenceBert](./sentence_bert)两种方法完成本匹配任务。 ## SimNet [SimNet](./simnet) 展示了如何使用CNN、LSTM、GRU等网络完成文本匹配任务。 ## Sentence Transformers [Sentence Transformers](./sentence_transformers) 展示了如何使用以ERNIE为代表的模型Fine-tune完成文本匹配任务。 ## 线上体验教程 - [使用seq2vec模块进行句子情感分类](https://aistudio.baidu.com/aistudio/projectdetail/1283423) - [如何将预训练模型Fine-tune下游任务](https://aistudio.baidu.com/aistudio/projectdetail/1294333) - [使用Bi-GRU+CRF完成快递单信息抽取](https://aistudio.baidu.com/aistudio/projectdetail/1317771) - [使用预训练模型ERNIE优化快递单信息抽取](https://aistudio.baidu.com/aistudio/projectdetail/1329361) - [使用Seq2Seq模型完成自动对联模型](https://aistudio.baidu.com/aistudio/projectdetail/1321118) - [使用预训练模型ERNIE-GEN实现智能写诗](https://aistudio.baidu.com/aistudio/projectdetail/1339888) - [使用TCN网络完成新冠疫情病例数预测](https://aistudio.baidu.com/aistudio/projectdetail/1290873) 更多教程参见[PaddleNLP on AI Studio](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995)。