- 29 10月, 2018 1 次提交
-
-
由 qingqing01 提交于
-
- 18 9月, 2018 1 次提交
-
-
由 whs 提交于
-
- 20 8月, 2018 1 次提交
-
-
由 whs 提交于
* Add attention training model for ocr. * Add beam search for infer. * Fix data reader. * Fix inference. * Prune result of inference. * Fix README * update README * Rsize figure. * Resize image and fix format.
-
- 31 7月, 2018 1 次提交
-
-
由 Michał Gallus 提交于
* Add MKL-DNN Benchmarking to CRNN-CTC * Make crnn-ctc scripts more portable * Add documentation for cycle to crnn-ctc-reader * Update crnn-ctc readme for CPU execution * Merge CRNN-CTC train & inference scripts * Fix mnist model & ce, kaffe graph yapf issues * Remove LD_LIBRARY_PATH from crnn-ctc scripts * CRNN-CTC scripts: set parallel to true Abort script if batch_size is lower than num of cores * CRNN-CTC scripts: limit mode options in infer * CRNN-CTC scripts: set mkldnn parallel to False
-
- 21 6月, 2018 1 次提交
-
-
由 whs 提交于
* Refine code for English dataset. 1. Remove a pooling layer. 2. Change classes_num to 94. 3. Modify some arguments in ctc_train.py 4. Add learning rate decay policy. * Fix readme. * Fix README. * Remove consine decay. * Remove eval.sh
-
- 10 5月, 2018 1 次提交
-
-
由 whs 提交于
-
- 19 4月, 2018 1 次提交
-
-
由 wanghaoshuang 提交于
-
- 11 4月, 2018 1 次提交
-
-
由 wanghaoshuang 提交于
1. Remove unused arguments. 2. Refine doc. 3. Change 'device' to 'use_gpu'.
-
- 08 4月, 2018 1 次提交
-
-
由 wanghaoshuang 提交于
1. Remove illustration of arguments. 2. Make inference support for more format input.
-
- 01 4月, 2018 3 次提交
-
-
由 wanghaoshuang 提交于
-
由 wanghaoshuang 提交于
-
由 wanghaoshuang 提交于
1. Add document. 2. Add arguments for saving model and init model. 3. Refine inference.py and eval.py. 4. Make ctc_reader.py support for custom data.
-
- 08 2月, 2018 1 次提交
-
-
由 wanghaoshuang 提交于
1. Move all network defining to 'crnn_ctc_model.py' 2. Add initilizer for some layers 3. Rename 'fluid/ocr' to 'fluid/ocr_recognition' 4. Remove copyright 5. Rename some functions
-
- 24 1月, 2018 1 次提交
-
-
由 wanghaoshuang 提交于
1. Remove 'ocr_ctc' directory to 'ocr'. 2. Init README.md 3. Fix learning rate and l2 4. Refine training log format 5. Reduce arguments of train function 6. Set filter_size of im2sequence dynamicly 7. Add fc op before GRU op
-