1. 18 6月, 2019 1 次提交
  2. 15 6月, 2019 1 次提交
    • R
      update image classification pretrained models (#2391) · 1230a298
      ruri 提交于
      * update image classification pretrained models
      
      * update softmax
      
      * Add mixup and distill and fix bugs
      
      * recover test pyreader
      
      * add error tip
      
      * update README_CN
      
      * fix distill bug
      
      * add reader_cv2.py
      
      * update run.sh
      
      * fix docs
      
      * fix typo
      
      * polish train.py
      
      * fix typo
      
      * remove commented code
      
      * fix typo
      
      * fix_typo
      
      * recover scale_loss
      
      * fix typo
      
      * fix bug
      
      * fix test_program bug
      1230a298
  3. 22 5月, 2019 1 次提交
    • R
      fix PE doc, add a note (#2252) · d16432a4
      ruri 提交于
      Because WINDOWS does not support NCCL. It will raise an error when users try to run the multi-GPUs program on WINDOWS machine. So add a note to remind users to replace parallel executor to executor.
      d16432a4
  4. 14 5月, 2019 1 次提交
  5. 06 5月, 2019 1 次提交
  6. 08 4月, 2019 1 次提交
  7. 04 4月, 2019 1 次提交
  8. 03 4月, 2019 1 次提交
    • R
      Refine Image Classification Codes&Docs (#1943) · dc1b032d
      ruri 提交于
      * Move models to legacy, rename models_name to models, refine README
      * Refine eval/infer/train code
      * Release ResNet 18/34, GoogleNet and ShuffleNet v2.
      * Add RMSProp optimizer.
      dc1b032d
  9. 15 3月, 2019 1 次提交
  10. 12 3月, 2019 1 次提交
  11. 01 3月, 2019 1 次提交
  12. 02 2月, 2019 1 次提交
  13. 01 2月, 2019 1 次提交
  14. 31 1月, 2019 1 次提交
  15. 10 1月, 2019 1 次提交
  16. 24 12月, 2018 1 次提交
  17. 06 12月, 2018 1 次提交
  18. 05 12月, 2018 1 次提交
  19. 29 10月, 2018 1 次提交
  20. 15 6月, 2018 1 次提交
  21. 28 4月, 2018 1 次提交
    • C
      Model update: Update the parameter initialization of FC layer of SE-ResNeXt and add a README (#825) · f60005c6
      Chris Yann 提交于
      * revise se_resnext for imagenet classification
      
      * Add the method to train a SE-ResNeXt model
      
      The current code can successfully implement the result of SE-ResNeXt-50.
      
      * Update ImageNet2012 URL
      
      * update
      
      * update readme
      
      * Update readme with download URL
      
      * add unzip
      
      * update se_resnext.py with parallel_exe
      
      * delete train function in se_resnext.py
      
      * add eval.py and infer.py
      
      * move cosine_decay from se_resnext.py to train.py
      f60005c6
  22. 24 2月, 2018 1 次提交
  23. 21 1月, 2018 1 次提交