Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
ffc68688
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ffc68688
编写于
3月 05, 2020
作者:
J
JepsonWong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dataloader for seq2seq, test=develop
上级
87e87ae7
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
173 addition
and
32 deletion
+173
-32
dygraph/seq2seq/reader.py
dygraph/seq2seq/reader.py
+154
-0
dygraph/seq2seq/train.py
dygraph/seq2seq/train.py
+19
-32
未找到文件。
dygraph/seq2seq/reader.py
100755 → 100644
浏览文件 @
ffc68688
...
...
@@ -22,6 +22,7 @@ import os
import
io
import
sys
import
numpy
as
np
import
paddle.fluid
as
fluid
Py3
=
sys
.
version_info
[
0
]
==
3
...
...
@@ -135,6 +136,53 @@ def raw_data(src_lang,
(
src_vocab
,
tar_vocab
)
def
raw_train_data
(
src_lang
,
tar_lang
,
vocab_prefix
,
train_prefix
,
max_sequence_len
=
50
):
src_vocab_file
=
vocab_prefix
+
"."
+
src_lang
tar_vocab_file
=
vocab_prefix
+
"."
+
tar_lang
src_train_file
=
train_prefix
+
"."
+
src_lang
tar_train_file
=
train_prefix
+
"."
+
tar_lang
src_vocab
=
_build_vocab
(
src_vocab_file
)
tar_vocab
=
_build_vocab
(
tar_vocab_file
)
train_src
,
train_tar
=
_para_file_to_ids
(
src_train_file
,
tar_train_file
,
\
src_vocab
,
tar_vocab
)
train_src
,
train_tar
=
filter_len
(
train_src
,
train_tar
,
max_sequence_len
=
max_sequence_len
)
return
(
train_src
,
train_tar
)
def
raw_eval_data
(
src_lang
,
tar_lang
,
vocab_prefix
,
eval_prefix
,
max_sequence_len
=
50
):
src_vocab_file
=
vocab_prefix
+
"."
+
src_lang
tar_vocab_file
=
vocab_prefix
+
"."
+
tar_lang
src_eval_file
=
eval_prefix
+
"."
+
src_lang
tar_eval_file
=
eval_prefix
+
"."
+
tar_lang
src_vocab
=
_build_vocab
(
src_vocab_file
)
tar_vocab
=
_build_vocab
(
tar_vocab_file
)
eval_src
,
eval_tar
=
_para_file_to_ids
(
src_eval_file
,
tar_eval_file
,
\
src_vocab
,
tar_vocab
)
return
(
eval_src
,
eval_tar
)
def
raw_test_data
(
src_lang
,
tar_lang
,
vocab_prefix
,
test_prefix
,
max_sequence_len
=
50
):
src_vocab_file
=
vocab_prefix
+
"."
+
src_lang
tar_vocab_file
=
vocab_prefix
+
"."
+
tar_lang
src_test_file
=
test_prefix
+
"."
+
src_lang
tar_test_file
=
test_prefix
+
"."
+
tar_lang
src_vocab
=
_build_vocab
(
src_vocab_file
)
tar_vocab
=
_build_vocab
(
tar_vocab_file
)
test_src
,
test_tar
=
_para_file_to_ids
(
src_test_file
,
tar_test_file
,
\
src_vocab
,
tar_vocab
)
return
(
test_src
,
test_tar
)
def
raw_mono_data
(
vocab_file
,
file_path
):
src_vocab
=
_build_vocab
(
vocab_file
)
...
...
@@ -144,6 +192,18 @@ def raw_mono_data(vocab_file, file_path):
return
(
test_src
,
test_tar
)
def
prepare_input
(
batch
):
src_ids
,
src_mask
,
tar_ids
,
tar_mask
=
batch
res
=
{}
src_ids
=
src_ids
.
reshape
((
src_ids
.
shape
[
0
],
src_ids
.
shape
[
1
]))
in_tar
=
tar_ids
[:,
:
-
1
]
label_tar
=
tar_ids
[:,
1
:]
in_tar
=
in_tar
.
reshape
((
in_tar
.
shape
[
0
],
in_tar
.
shape
[
1
]))
label_tar
=
label_tar
.
reshape
(
(
label_tar
.
shape
[
0
],
label_tar
.
shape
[
1
],
1
))
inputs
=
(
src_ids
,
in_tar
,
label_tar
,
src_mask
,
tar_mask
,
np
.
sum
(
tar_mask
))
return
inputs
def
get_data_iter
(
raw_data
,
batch_size
,
...
...
@@ -218,3 +278,97 @@ def get_data_iter(raw_data,
src_ids
,
src_mask
=
to_pad_np
(
src_cache
,
source
=
True
)
tar_ids
,
tar_mask
=
to_pad_np
(
tar_cache
)
yield
(
src_ids
,
src_mask
,
tar_ids
,
tar_mask
)
def
get_reader
(
batch_size
,
src_lang
,
tar_lang
,
vocab_prefix
,
data_prefix
,
max_len
=
50
,
reader_mode
=
'train'
,
mode
=
'train'
,
enable_ce
=
False
,
cache_num
=
20
):
def
get_data_reader
():
def
get_batch_data
():
if
reader_mode
==
'train'
:
raw_data
=
raw_train_data
(
src_lang
,
tar_lang
,
vocab_prefix
,
data_prefix
,
max_sequence_len
=
max_len
)
elif
reader_mode
==
'valid'
:
raw_data
=
raw_eval_data
(
src_lang
,
tar_lang
,
vocab_prefix
,
data_prefix
)
else
:
raw_data
=
raw_test_data
(
src_lang
,
tar_lang
,
vocab_prefix
,
data_prefix
)
src_data
,
tar_data
=
raw_data
data_len
=
len
(
src_data
)
index
=
np
.
arange
(
data_len
)
if
mode
==
"train"
and
not
enable_ce
:
np
.
random
.
shuffle
(
index
)
def
to_pad_np
(
data
,
source
=
False
):
max_len
=
0
bs
=
min
(
batch_size
,
len
(
data
))
for
ele
in
data
:
if
len
(
ele
)
>
max_len
:
max_len
=
len
(
ele
)
ids
=
np
.
ones
((
bs
,
max_len
),
dtype
=
'int64'
)
*
2
mask
=
np
.
zeros
((
bs
),
dtype
=
'int32'
)
for
i
,
ele
in
enumerate
(
data
):
ids
[
i
,
:
len
(
ele
)]
=
ele
if
not
source
:
mask
[
i
]
=
len
(
ele
)
-
1
else
:
mask
[
i
]
=
len
(
ele
)
return
ids
,
mask
b_src
=
[]
nonlocal
cache_num
if
mode
!=
"train"
:
cache_num
=
1
for
j
in
range
(
data_len
):
if
len
(
b_src
)
==
batch_size
*
cache_num
:
# build batch size
# sort
if
mode
==
'infer'
:
new_cache
=
b_src
else
:
new_cache
=
sorted
(
b_src
,
key
=
lambda
k
:
len
(
k
[
0
]))
for
i
in
range
(
cache_num
):
batch_data
=
new_cache
[
i
*
batch_size
:(
i
+
1
)
*
batch_size
]
src_cache
=
[
w
[
0
]
for
w
in
batch_data
]
tar_cache
=
[
w
[
1
]
for
w
in
batch_data
]
src_ids
,
src_mask
=
to_pad_np
(
src_cache
,
source
=
True
)
tar_ids
,
tar_mask
=
to_pad_np
(
tar_cache
)
yield
prepare_input
((
src_ids
,
src_mask
,
tar_ids
,
tar_mask
))
b_src
=
[]
b_src
.
append
((
src_data
[
index
[
j
]],
tar_data
[
index
[
j
]]))
if
len
(
b_src
)
==
batch_size
*
cache_num
or
mode
==
'infer'
:
if
mode
==
'infer'
:
new_cache
=
b_src
else
:
new_cache
=
sorted
(
b_src
,
key
=
lambda
k
:
len
(
k
[
0
]))
for
i
in
range
(
cache_num
):
batch_end
=
min
(
len
(
new_cache
),
(
i
+
1
)
*
batch_size
)
batch_data
=
new_cache
[
i
*
batch_size
:
batch_end
]
src_cache
=
[
w
[
0
]
for
w
in
batch_data
]
tar_cache
=
[
w
[
1
]
for
w
in
batch_data
]
src_ids
,
src_mask
=
to_pad_np
(
src_cache
,
source
=
True
)
tar_ids
,
tar_mask
=
to_pad_np
(
tar_cache
)
yield
prepare_input
((
src_ids
,
src_mask
,
tar_ids
,
tar_mask
))
return
get_batch_data
data_reader
=
get_data_reader
()
return
data_reader
dygraph/seq2seq/train.py
100755 → 100644
浏览文件 @
ffc68688
...
...
@@ -102,39 +102,31 @@ def main():
src_lang
=
args
.
src_lang
tar_lang
=
args
.
tar_lang
print
(
"begin to load data"
)
raw_data
=
reader
.
raw_data
(
src_lang
,
tar_lang
,
vocab_prefix
,
train_data_prefix
,
eval_data_prefix
,
test_data_prefix
,
args
.
max_len
)
train_data_iter
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
)
valid_data_iter
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
)
test_data_iter
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
)
train_reader
=
reader
.
get_reader
(
batch_size
,
src_lang
,
tar_lang
,
vocab_prefix
,
train_data_prefix
,
max_len
=
args
.
max_len
,
reader_mode
=
'train'
,
enable_ce
=
args
.
enable_ce
,
cache_num
=
20
)
train_data_iter
.
set_batch_generator
(
train_reader
,
place
)
valid_reader
=
reader
.
get_reader
(
batch_size
,
src_lang
,
tar_lang
,
vocab_prefix
,
eval_data_prefix
,
reader_mode
=
'valid'
,
mode
=
'eval'
,
cache_num
=
20
)
valid_data_iter
.
set_batch_generator
(
valid_reader
,
place
)
test_reader
=
reader
.
get_reader
(
batch_size
,
src_lang
,
tar_lang
,
vocab_prefix
,
test_data_prefix
,
reader_mode
=
'test'
,
mode
=
'eval'
,
cache_num
=
20
)
test_data_iter
.
set_batch_generator
(
test_reader
,
place
)
print
(
"finished load data"
)
train_data
,
valid_data
,
test_data
,
_
=
raw_data
def
prepare_input
(
batch
,
epoch_id
=
0
):
src_ids
,
src_mask
,
tar_ids
,
tar_mask
=
batch
res
=
{}
src_ids
=
src_ids
.
reshape
((
src_ids
.
shape
[
0
],
src_ids
.
shape
[
1
]))
in_tar
=
tar_ids
[:,
:
-
1
]
label_tar
=
tar_ids
[:,
1
:]
in_tar
=
in_tar
.
reshape
((
in_tar
.
shape
[
0
],
in_tar
.
shape
[
1
]))
label_tar
=
label_tar
.
reshape
(
(
label_tar
.
shape
[
0
],
label_tar
.
shape
[
1
],
1
))
inputs
=
[
src_ids
,
in_tar
,
label_tar
,
src_mask
,
tar_mask
]
return
inputs
,
np
.
sum
(
tar_mask
)
# get train epoch size
def
eval
(
data
,
epoch_id
=
0
):
def
eval
(
eval_data_iter
,
epoch_id
=
0
):
model
.
eval
()
eval_data_iter
=
reader
.
get_data_iter
(
data
,
batch_size
,
mode
=
'eval'
)
total_loss
=
0.0
word_count
=
0.0
for
batch_id
,
batch
in
enumerate
(
eval_data_iter
):
input_data_feed
,
word_num
=
prepare_input
(
batch
,
epoch_id
)
input_data_feed
1
,
input_data_feed2
,
input_data_feed3
,
input_data_feed4
,
input_data_feed5
,
word_num
=
batch
input_data_feed
=
[
input_data_feed1
,
input_data_feed2
,
input_data_feed3
,
input_data_feed4
,
input_data_feed5
]
loss
=
model
(
input_data_feed
)
total_loss
+=
loss
*
batch_size
word_count
+=
word_num
ppl
=
np
.
exp
(
total_loss
.
numpy
()
/
word_count
)
ppl
=
np
.
exp
(
total_loss
.
numpy
()
/
word_count
.
numpy
()
)
model
.
train
()
return
ppl
...
...
@@ -142,19 +134,14 @@ def main():
for
epoch_id
in
range
(
max_epoch
):
model
.
train
()
start_time
=
time
.
time
()
if
args
.
enable_ce
:
train_data_iter
=
reader
.
get_data_iter
(
train_data
,
batch_size
,
enable_ce
=
True
)
else
:
train_data_iter
=
reader
.
get_data_iter
(
train_data
,
batch_size
)
total_loss
=
0
word_count
=
0.0
batch_times
=
[]
for
batch_id
,
batch
in
enumerate
(
train_data_iter
):
batch_start_time
=
time
.
time
()
input_data_feed
,
word_num
=
prepare_input
(
batch
,
epoch_id
=
epoch_id
)
input_data_feed
1
,
input_data_feed2
,
input_data_feed3
,
input_data_feed4
,
input_data_feed5
,
word_num
=
batch
input_data_feed
=
[
input_data_feed1
,
input_data_feed2
,
input_data_feed3
,
input_data_feed4
,
input_data_feed5
]
word_count
+=
word_num
loss
=
model
(
input_data_feed
)
# print(loss.numpy()[0])
...
...
@@ -169,7 +156,7 @@ def main():
if
batch_id
>
0
and
batch_id
%
100
==
0
:
print
(
"-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f"
%
(
epoch_id
,
batch_id
,
batch_time
,
np
.
exp
(
total_loss
.
numpy
()
/
word_count
)))
np
.
exp
(
total_loss
.
numpy
()
/
word_count
.
numpy
()
)))
total_loss
=
0.0
word_count
=
0.0
...
...
@@ -185,9 +172,9 @@ def main():
print
(
"begin to save"
,
dir_name
)
paddle
.
fluid
.
save_dygraph
(
model
.
state_dict
(),
dir_name
)
print
(
"save finished"
)
dev_ppl
=
eval
(
valid_data
)
dev_ppl
=
eval
(
valid_data
_iter
)
print
(
"dev ppl"
,
dev_ppl
)
test_ppl
=
eval
(
test_data
)
test_ppl
=
eval
(
test_data
_iter
)
print
(
"test ppl"
,
test_ppl
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录