提交 facd3b64 编写于 作者: Z Zeyu Chen

re-organize language model and update readme

上级 e6120740
此差异已折叠。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import sys
import hashlib
import random
import time
import math
from functools import partial
import numpy as np
import paddle
from paddle.io import DataLoader
from paddle.metric import Metric, Accuracy, Precision, Recall
from paddlenlp.datasets import GlueCoLA, GlueSST2, GlueMRPC, GlueSTSB, GlueQQP, GlueMNLI, GlueQNLI, GlueRTE
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.data.sampler import SamplerHelper
from paddlenlp.transformers import ElectraForSequenceClassification, ElectraTokenizer
from paddlenlp.utils.log import logger
from paddlenlp.metrics import AccuracyAndF1, Mcc, PearsonAndSpearman
TASK_CLASSES = {
"cola": (GlueCoLA, Mcc),
"sst-2": (GlueSST2, Accuracy),
"mrpc": (GlueMRPC, AccuracyAndF1),
"sts-b": (GlueSTSB, PearsonAndSpearman),
"qqp": (GlueQQP, AccuracyAndF1),
"mnli": (GlueMNLI, Accuracy),
"qnli": (GlueQNLI, Accuracy),
"rte": (GlueRTE, Accuracy),
}
MODEL_CLASSES = {
"electra": (ElectraForSequenceClassification, ElectraTokenizer),
}
def set_seed(args):
random.seed(args.seed + paddle.distributed.get_rank())
np.random.seed(args.seed + paddle.distributed.get_rank())
paddle.seed(args.seed + paddle.distributed.get_rank())
def evaluate(model, loss_fct, metric, data_loader):
model.eval()
metric.reset()
for batch in data_loader:
input_ids, segment_ids, labels = batch
logits = model(input_ids=input_ids, token_type_ids=segment_ids)
loss = loss_fct(logits, labels)
correct = metric.compute(logits, labels)
metric.update(correct)
acc = metric.accumulate()
print("eval loss: %f, acc: %s, " % (loss.numpy(), acc), end='')
model.train()
def convert_example(example,
tokenizer,
label_list,
max_seq_length=128,
is_test=False):
"""convert a glue example into necessary features"""
def _truncate_seqs(seqs, max_seq_length):
if len(seqs) == 1: # single sentence
# Account for [CLS] and [SEP] with "- 2"
seqs[0] = seqs[0][0:(max_seq_length - 2)]
else: # Sentence pair
# Account for [CLS], [SEP], [SEP] with "- 3"
tokens_a, tokens_b = seqs
max_seq_length -= 3
while True: # Truncate with longest_first strategy
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_seq_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
return seqs
def _concat_seqs(seqs, separators, seq_mask=0, separator_mask=1):
concat = sum((seq + sep for sep, seq in zip(separators, seqs)), [])
segment_ids = sum(
([i] * (len(seq) + len(sep))
for i, (sep, seq) in enumerate(zip(separators, seqs))), [])
if isinstance(seq_mask, int):
seq_mask = [[seq_mask] * len(seq) for seq in seqs]
if isinstance(separator_mask, int):
separator_mask = [[separator_mask] * len(sep) for sep in separators]
p_mask = sum((s_mask + mask
for sep, seq, s_mask, mask in zip(
separators, seqs, seq_mask, separator_mask)), [])
return concat, segment_ids, p_mask
if not is_test:
# `label_list == None` is for regression task
label_dtype = "int64" if label_list else "float32"
# Get the label
label = example[-1]
example = example[:-1]
# Create label maps if classification task
if label_list:
label_map = {}
for (i, l) in enumerate(label_list):
label_map[l] = i
label = label_map[label]
label = np.array([label], dtype=label_dtype)
# Tokenize raw text
tokens_raw = [tokenizer(l) for l in example]
# Truncate to the truncate_length,
tokens_trun = _truncate_seqs(tokens_raw, max_seq_length)
# Concate the sequences with special tokens
tokens_trun[0] = [tokenizer.cls_token] + tokens_trun[0]
tokens, segment_ids, _ = _concat_seqs(tokens_trun, [[tokenizer.sep_token]] *
len(tokens_trun))
# Convert the token to ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
valid_length = len(input_ids)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
# input_mask = [1] * len(input_ids)
if not is_test:
return input_ids, segment_ids, valid_length, label
else:
return input_ids, segment_ids, valid_length
def do_train(args):
paddle.enable_static() if not args.eager_run else None
paddle.set_device("gpu" if args.n_gpu else "cpu")
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args)
args.task_name = args.task_name.lower()
dataset_class, metric_class = TASK_CLASSES[args.task_name]
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
train_dataset = dataset_class.get_datasets(["train"])
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
trans_func = partial(
convert_example,
tokenizer=tokenizer,
label_list=train_dataset.get_labels(),
max_seq_length=args.max_seq_length)
train_dataset = train_dataset.apply(trans_func, lazy=True)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.batch_size, shuffle=True)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment
Stack(), # length
Stack(dtype="int64" if train_dataset.get_labels() else "float32") # label
): [data for i, data in enumerate(fn(samples)) if i != 2]
train_data_loader = DataLoader(
dataset=train_dataset,
batch_sampler=train_batch_sampler,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
if args.task_name == "mnli":
dev_dataset_matched, dev_dataset_mismatched = dataset_class.get_datasets(
["dev_matched", "dev_mismatched"])
dev_dataset_matched = dev_dataset_matched.apply(trans_func, lazy=True)
dev_dataset_mismatched = dev_dataset_mismatched.apply(
trans_func, lazy=True)
dev_batch_sampler_matched = paddle.io.BatchSampler(
dev_dataset_matched, batch_size=args.batch_size, shuffle=False)
dev_data_loader_matched = DataLoader(
dataset=dev_dataset_matched,
batch_sampler=dev_batch_sampler_matched,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
dev_batch_sampler_mismatched = paddle.io.BatchSampler(
dev_dataset_mismatched, batch_size=args.batch_size, shuffle=False)
dev_data_loader_mismatched = DataLoader(
dataset=dev_dataset_mismatched,
batch_sampler=dev_batch_sampler_mismatched,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
else:
dev_dataset = dataset_class.get_datasets(["dev"])
dev_dataset = dev_dataset.apply(trans_func, lazy=True)
dev_batch_sampler = paddle.io.BatchSampler(
dev_dataset, batch_size=args.batch_size, shuffle=False)
dev_data_loader = DataLoader(
dataset=dev_dataset,
batch_sampler=dev_batch_sampler,
collate_fn=batchify_fn,
num_workers=0,
return_list=True)
num_labels = 1 if train_dataset.get_labels() == None else len(
train_dataset.get_labels())
model = model_class.from_pretrained(
args.model_name_or_path, num_labels=num_labels)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
num_training_steps = args.max_steps if args.max_steps > 0 else (
len(train_data_loader) * args.num_train_epochs)
warmup_steps = int(math.floor(num_training_steps * args.warmup_proportion))
lr_scheduler = paddle.optimizer.lr.LambdaDecay(
args.learning_rate,
lambda current_step, num_warmup_steps=warmup_steps,
num_training_steps=num_training_steps : float(
current_step) / float(max(1, num_warmup_steps))
if current_step < num_warmup_steps else max(
0.0,
float(num_training_steps - current_step) / float(
max(1, num_training_steps - num_warmup_steps))))
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
beta1=0.9,
beta2=0.999,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm", "LayerNorm"])
])
loss_fct = paddle.nn.loss.CrossEntropyLoss() if train_dataset.get_labels(
) else paddle.nn.loss.MSELoss()
metric = metric_class()
### TODO: use hapi
# trainer = paddle.hapi.Model(model)
# trainer.prepare(optimizer, loss_fct, paddle.metric.Accuracy())
# trainer.fit(train_data_loader,
# dev_data_loader,
# log_freq=args.logging_steps,
# epochs=args.num_train_epochs,
# save_dir=args.output_dir)
global_step = 0
tic_train = time.time()
for epoch in range(args.num_train_epochs):
for step, batch in enumerate(train_data_loader):
global_step += 1
input_ids, segment_ids, labels = batch
logits = model(input_ids=input_ids, token_type_ids=segment_ids)
loss = loss_fct(logits, labels)
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_gradients()
if global_step % args.logging_steps == 0:
print(
"global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s"
% (global_step, num_training_steps, epoch, step,
paddle.distributed.get_rank(), loss, optimizer.get_lr(),
args.logging_steps / (time.time() - tic_train)))
tic_train = time.time()
if global_step % args.save_steps == 0:
tic_eval = time.time()
if args.task_name == "mnli":
evaluate(model, loss_fct, metric, dev_data_loader_matched)
evaluate(model, loss_fct, metric,
dev_data_loader_mismatched)
print("eval done total : %s s" % (time.time() - tic_eval))
else:
evaluate(model, loss_fct, metric, dev_data_loader)
print("eval done total : %s s" % (time.time() - tic_eval))
if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0:
output_dir = os.path.join(args.output_dir,
"%s_ft_model_%d.pdparams" %
(args.task_name, global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Need better way to get inner model of DataParallel
model_to_save = model._layers if isinstance(
model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
def get_md5sum(file_path):
md5sum = None
if os.path.isfile(file_path):
with open(file_path, 'rb') as f:
md5_obj = hashlib.md5()
md5_obj.update(f.read())
hash_code = md5_obj.hexdigest()
md5sum = str(hash_code).lower()
return md5sum
def print_arguments(args):
"""print arguments"""
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).items()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train selected in the list: " +
", ".join(TASK_CLASSES.keys()), )
parser.add_argument(
"--model_type",
default="electra",
type=str,
required=False,
help="Model type selected in the list: " +
", ".join(MODEL_CLASSES.keys()), )
parser.add_argument(
"--model_name_or_path",
default="./",
type=str,
required=False,
help="Path to pre-trained model or shortcut name selected in the list: "
+ ", ".join(
sum([
list(classes[-1].pretrained_init_configuration.keys())
for classes in MODEL_CLASSES.values()
], [])), )
parser.add_argument(
"--output_dir",
default="./ft_model/",
type=str,
required=False,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.", )
parser.add_argument(
"--learning_rate",
default=1e-4,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument(
"--num_train_epochs",
default=3,
type=int,
help="Total number of training epochs to perform.", )
parser.add_argument(
"--logging_steps",
type=int,
default=100,
help="Log every X updates steps.")
parser.add_argument(
"--save_steps",
type=int,
default=100,
help="Save checkpoint every X updates steps.")
parser.add_argument(
"--batch_size",
default=32,
type=int,
help="Batch size per GPU/CPU for training.", )
parser.add_argument(
"--weight_decay",
default=0.0,
type=float,
help="Weight decay if we apply some.")
parser.add_argument(
"--warmup_proportion",
default=0.1,
type=float,
help="Linear warmup proportion over total steps.")
parser.add_argument(
"--adam_epsilon",
default=1e-6,
type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument(
"--seed", default=42, type=int, help="random seed for initialization")
parser.add_argument(
"--eager_run", default=True, type=eval, help="Use dygraph mode.")
parser.add_argument(
"--n_gpu",
default=1,
type=int,
help="number of gpus to use, 0 for cpu.")
args, unparsed = parser.parse_known_args()
print_arguments(args)
if args.n_gpu > 1:
paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_gpu)
else:
do_train(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册