diff --git a/fluid/sequence_tagging_for_ner/README.md b/fluid/sequence_tagging_for_ner/README.md
index e5d2edc4f78718872a666176c845f346cd1a7a49..fb9214b28e25ef22f1966f84f666b52fec837584 100644
--- a/fluid/sequence_tagging_for_ner/README.md
+++ b/fluid/sequence_tagging_for_ner/README.md
@@ -4,91 +4,29 @@
```text
.
-├── data # 存储运行本例所依赖的数据
-│ ├── download.sh
+├── data # 存储运行本例所依赖的数据,从外部获取
├── network_conf.py # 模型定义
-├── reader.py # 数据读取接口
+├── reader.py # 数据读取接口, 从外部获取
├── README.md # 文档
├── train.py # 训练脚本
├── infer.py # 预测脚本
-└── utils.py # 定义同样的函数
+└── utils.py # 定义通用的函数, 从外部获取
+└── utils_extend.py # 对utils.py的拓展
```
-## 简介
+## 简介,模型详解与数据说明
-命名实体识别(Named Entity Recognition,NER)又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,是自然语言处理研究的一个基础问题。NER任务通常包括实体边界识别、确定实体类别两部分,可以将其作为序列标注问题解决。
+参考https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/README.md
+在模型上,我们使用LSTM代替原始的RNN。
-序列标注可以分为Sequence Classification、Segment Classification和Temporal Classification三类[[1](#参考文献)],本例只考虑Segment Classification,即对输入序列中的每个元素在输出序列中给出对应的标签。对于NER任务,由于需要标识边界,一般采用[BIO标注方法](http://book.paddlepaddle.org/07.label_semantic_roles/)定义的标签集。
+## 数据获取
-根据序列标注结果可以直接得到实体边界和实体类别。类似的,分词、词性标注、语块识别、[语义角色标注](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等任务都可通过序列标注来解决。使用神经网络模型解决问题的思路通常是:前层网络学习输入的特征表示,网络的最后一层在特征基础上完成最终的任务;对于序列标注问题,通常:使用基于RNN的网络结构学习特征,将学习到的特征接入CRF完成序列标注。实际上是将传统CRF中的线性模型换成了非线性神经网络。沿用CRF的出发点是:CRF使用句子级别的似然概率,能够更好的解决标记偏置问题[[2](#参考文献)]。本例也将基于此思路建立模型。虽然,这里以NER任务作为示例,但所给出的模型可以应用到其他各种序列标注任务中。
+参照https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/README.md中的数据获取方式,将获取的data目录复制到本目录下。
-由于序列标注问题的广泛性,产生了[CRF](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等经典的序列模型,这些模型大多只能使用局部信息或需要人工设计特征。随着深度学习研究的发展,循环神经网络(Recurrent Neural Network,RNN等 序列模型能够处理序列元素之间前后关联问题,能够从原始输入文本中学习特征表示,而更加适合序列标注任务,更多相关知识可参考PaddleBook中[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/07.label_semantic_roles/README.cn.md)一课。
+## 通用脚本获取
-## 模型详解
-
-NER任务的输入是"一句话",目标是识别句子中的实体边界及类别,我们参照论文\[[2](#参考文献)\]仅对原始句子进行了一些简单的预处理工作:将每个词转换为小写,并将原词是否大写另作为一个特征,共同作为模型的输入。工作流程如下:
-
-1. 构造输入
- - 输入1是句子序列,采用one-hot方式表示
- - 输入2是大写标记序列,标记了句子中每一个词是否是大写,采用one-hot方式表示;
-2. one-hot方式的句子序列和大写标记序列通过词表,转换为实向量表示的词向量序列;
-3. 将步骤2中的2个词向量序列作为双向LSTM的输入,学习输入序列的特征表示,得到新的特性表示序列;
-4. CRF以步骤3中模型学习到的特征为输入,以标记序列为监督信号,实现序列标注。
-
-
-## 数据说明
-
-在本例中,我们以 [CoNLL 2003 NER任务](http://www.clips.uantwerpen.be/conll2003/ner/)为例,原始Reuters数据由于版权原因需另外申请免费下载,请大家按照原网站说明获取。
-
-+ 我们仅在`data`目录下的`train`和`test`文件中放置少数样本用以示例输入数据格式。
-+ 本例依赖数据还包括
- 1. 输入文本的词典
- 2. 为词典中的词语提供预训练好的词向量
- 2. 标记标签的词典
- 标记标签词典已附在`data`目录中,对应于`data/target.txt`文件。输入文本的词典以及词典中词语的预训练的词向量来自:[Stanford CS224d](http://cs224d.stanford.edu/)课程作业。**为运行本例,请首先在`data`目录下运行`download.sh`脚本下载输入文本的词典和预训练的词向量。** 完成后会将这两个文件一并放入`data`目录下,输入文本的词典和预训练的词向量分别对应:`data/vocab.txt`和`data/wordVectors.txt`这两个文件。
-
-CoNLL 2003原始数据格式如下:
-
-```
-U.N. NNP I-NP I-ORG
-official NN I-NP O
-Ekeus NNP I-NP I-PER
-heads VBZ I-VP O
-for IN I-PP O
-Baghdad NNP I-NP I-LOC
-. . O O
-```
-
-- 第一列为原始句子序列
-- 第二、三列分别为词性标签和句法分析中的语块标签,本例不使用
-- 第四列为采用了 I-TYPE 方式表示的NER标签
- - I-TYPE 和 BIO 方式的主要区别在于语块开始标记的使用上,I-TYPE只有在出现相邻的同类别实体时对后者使用B标记,其他均使用I标记),句子之间以空行分隔。
-
-我们在`reader.py`脚本中完成对原始数据的处理以及读取,主要包括下面几个步骤:
-
-1. 从原始数据文件中抽取出句子和标签,构造句子序列和标签序列;
-2. 将 I-TYPE 表示的标签转换为 BIO 方式表示的标签;
-3. 将句子序列中的单词转换为小写,并构造大写标记序列;
-4. 依据词典获取词对应的整数索引。
-
-
-预处理完成后,一条训练样本包含3个部分作为神经网络的输入信息用于训练:(1)句子序列;(2)首字母大写标记序列;(3)标注序列,下表是一条训练样本的示例:
-
-| 句子序列 | 大写标记序列 | 标注序列 |
-| -------- | ------------ | -------- |
-| u.n. | 1 | B-ORG |
-| official | 0 | O |
-| ekeus | 1 | B-PER |
-| heads | 0 | O |
-| for | 0 | O |
-| baghdad | 1 | B-LOC |
-| . | 0 | O |
-
-## 运行
-### 编写数据读取接口
-
-自定义数据读取接口只需编写一个 Python 生成器实现从原始输入文本中解析一条训练样本的逻辑。[reader.py](./reader.py) 中的`data_reader`函数实现了读取原始数据返回类型为: `paddle.data_type.integer_value_sequence`的 3 个输入(分别对应:词语在字典的序号、是否为大写、标注结果在字典中的序号)给`network_conf.ner_net`中定义的 3 个 `data_layer` 的功能。
+本例需要使用https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/reader.py以及https://github.com/PaddlePaddle/models/blob/develop/sequence_tagging_for_ner/utils.py,请将这两个文件复制到本目录下。
### 训练
@@ -145,44 +83,38 @@ Baghdad NNP I-NP I-LOC
2. 在终端运行 `python infer.py`,开始测试,会看到如下预测结果(以下为训练70个pass所得模型的部分预测结果):
-```
-leicestershire B-ORG B-LOC
-extended O O
-their O O
-first O O
-innings O O
-by O O
-DGDG O O
-runs O O
-before O O
-being O O
-bowled O O
-out O O
-for O O
-296 O O
-with O O
-england B-LOC B-LOC
-discard O O
-andy B-PER B-PER
-caddick I-PER I-PER
-taking O O
-three O O
-for O O
-DGDG O O
-. O O
-```
+ ```text
+ leicestershire B-ORG B-LOC
+ extended O O
+ their O O
+ first O O
+ innings O O
+ by O O
+ DGDG O O
+ runs O O
+ before O O
+ being O O
+ bowled O O
+ out O O
+ for O O
+ 296 O O
+ with O O
+ england B-LOC B-LOC
+ discard O O
+ andy B-PER B-PER
+ caddick I-PER I-PER
+ taking O O
+ three O O
+ for O O
+ DGDG O O
+ . O O
+ ```
输出分为三列,以“\t” 分隔,第一列是输入的词语,第二列是标准结果,第三列为生成的标记结果。多条输入序列之间以空行分隔。
-## 真实结果示例
+## 结果示例
-
-图1. Fluid下实验结果示例
+
+图1. Paddle下实验结果示例, 横轴表示训练轮数,纵轴表示F1值
-
-
-## 参考文献
-
-1. Graves A. [Supervised Sequence Labelling with Recurrent Neural Networks](http://www.cs.toronto.edu/~graves/preprint.pdf)[J]. Studies in Computational Intelligence, 2013, 385.
-2. Collobert R, Weston J, Bottou L, et al. [Natural Language Processing (Almost) from Scratch](http://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf)[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537.
diff --git a/fluid/sequence_tagging_for_ner/data/download.sh b/fluid/sequence_tagging_for_ner/data/download.sh
deleted file mode 100644
index 99d81c1e0949e47187cd082947117eb4e6bd888d..0000000000000000000000000000000000000000
--- a/fluid/sequence_tagging_for_ner/data/download.sh
+++ /dev/null
@@ -1,16 +0,0 @@
-if [ -f assignment2.zip ]; then
- echo "data exist"
-else
- wget http://cs224d.stanford.edu/assignment2/assignment2.zip
-fi
-
-if [ $? -eq 0 ];then
- unzip assignment2.zip
- cp assignment2_release/data/ner/wordVectors.txt ./data
- cp assignment2_release/data/ner/vocab.txt ./data
- rm -rf assignment2.zip assignment2_release
-else
- echo "download data error!" >> /dev/stderr
- exit 1
-fi
-
diff --git a/fluid/sequence_tagging_for_ner/data/target.txt b/fluid/sequence_tagging_for_ner/data/target.txt
deleted file mode 100644
index e0fa4d8f6654be07b4d1188750abb861d7c6f264..0000000000000000000000000000000000000000
--- a/fluid/sequence_tagging_for_ner/data/target.txt
+++ /dev/null
@@ -1,9 +0,0 @@
-B-LOC
-I-LOC
-B-MISC
-I-MISC
-B-ORG
-I-ORG
-B-PER
-I-PER
-O
diff --git a/fluid/sequence_tagging_for_ner/data/test b/fluid/sequence_tagging_for_ner/data/test
deleted file mode 100644
index 66163e1a869d57303117dd94d59ff01be05de8f7..0000000000000000000000000000000000000000
--- a/fluid/sequence_tagging_for_ner/data/test
+++ /dev/null
@@ -1,128 +0,0 @@
-CRICKET NNP I-NP O
-- : O O
-LEICESTERSHIRE NNP I-NP I-ORG
-TAKE NNP I-NP O
-OVER IN I-PP O
-AT NNP I-NP O
-TOP NNP I-NP O
-AFTER NNP I-NP O
-INNINGS NNP I-NP O
-VICTORY NN I-NP O
-. . O O
-
-LONDON NNP I-NP I-LOC
-1996-08-30 CD I-NP O
-
-West NNP I-NP I-MISC
-Indian NNP I-NP I-MISC
-all-rounder NN I-NP O
-Phil NNP I-NP I-PER
-Simmons NNP I-NP I-PER
-took VBD I-VP O
-four CD I-NP O
-for IN I-PP O
-38 CD I-NP O
-on IN I-PP O
-Friday NNP I-NP O
-as IN I-PP O
-Leicestershire NNP I-NP I-ORG
-beat VBD I-VP O
-Somerset NNP I-NP I-ORG
-by IN I-PP O
-an DT I-NP O
-innings NN I-NP O
-and CC O O
-39 CD I-NP O
-runs NNS I-NP O
-in IN I-PP O
-two CD I-NP O
-days NNS I-NP O
-to TO I-VP O
-take VB I-VP O
-over IN I-PP O
-at IN B-PP O
-the DT I-NP O
-head NN I-NP O
-of IN I-PP O
-the DT I-NP O
-county NN I-NP O
-championship NN I-NP O
-. . O O
-
-Their PRP$ I-NP O
-stay NN I-NP O
-on IN I-PP O
-top NN I-NP O
-, , O O
-though RB I-ADVP O
-, , O O
-may MD I-VP O
-be VB I-VP O
-short-lived JJ I-ADJP O
-as IN I-PP O
-title NN I-NP O
-rivals NNS I-NP O
-Essex NNP I-NP I-ORG
-, , O O
-Derbyshire NNP I-NP I-ORG
-and CC I-NP O
-Surrey NNP I-NP I-ORG
-all DT O O
-closed VBD I-VP O
-in RP I-PRT O
-on IN I-PP O
-victory NN I-NP O
-while IN I-SBAR O
-Kent NNP I-NP I-ORG
-made VBD I-VP O
-up RP I-PRT O
-for IN I-PP O
-lost VBN I-NP O
-time NN I-NP O
-in IN I-PP O
-their PRP$ I-NP O
-rain-affected JJ I-NP O
-match NN I-NP O
-against IN I-PP O
-Nottinghamshire NNP I-NP I-ORG
-. . O O
-
-After IN I-PP O
-bowling VBG I-NP O
-Somerset NNP I-NP I-ORG
-out RP I-PRT O
-for IN I-PP O
-83 CD I-NP O
-on IN I-PP O
-the DT I-NP O
-opening NN I-NP O
-morning NN I-NP O
-at IN I-PP O
-Grace NNP I-NP I-LOC
-Road NNP I-NP I-LOC
-, , O O
-Leicestershire NNP I-NP I-ORG
-extended VBD I-VP O
-their PRP$ I-NP O
-first JJ I-NP O
-innings NN I-NP O
-by IN I-PP O
-94 CD I-NP O
-runs VBZ I-VP O
-before IN I-PP O
-being VBG I-VP O
-bowled VBD I-VP O
-out RP I-PRT O
-for IN I-PP O
-296 CD I-NP O
-with IN I-PP O
-England NNP I-NP I-LOC
-discard VBP I-VP O
-Andy NNP I-NP I-PER
-Caddick NNP I-NP I-PER
-taking VBG I-VP O
-three CD I-NP O
-for IN I-PP O
-83 CD I-NP O
-. . O O
-
diff --git a/fluid/sequence_tagging_for_ner/data/train b/fluid/sequence_tagging_for_ner/data/train
deleted file mode 100644
index cbf3e678c555a3b6db26fd14e38889f040f048ca..0000000000000000000000000000000000000000
--- a/fluid/sequence_tagging_for_ner/data/train
+++ /dev/null
@@ -1,139 +0,0 @@
-EU NNP I-NP I-ORG
-rejects VBZ I-VP O
-German JJ I-NP I-MISC
-call NN I-NP O
-to TO I-VP O
-boycott VB I-VP O
-British JJ I-NP I-MISC
-lamb NN I-NP O
-. . O O
-
-Peter NNP I-NP I-PER
-Blackburn NNP I-NP I-PER
-
-BRUSSELS NNP I-NP I-LOC
-1996-08-22 CD I-NP O
-
-The DT I-NP O
-European NNP I-NP I-ORG
-Commission NNP I-NP I-ORG
-said VBD I-VP O
-on IN I-PP O
-Thursday NNP I-NP O
-it PRP B-NP O
-disagreed VBD I-VP O
-with IN I-PP O
-German JJ I-NP I-MISC
-advice NN I-NP O
-to TO I-PP O
-consumers NNS I-NP O
-to TO I-VP O
-shun VB I-VP O
-British JJ I-NP I-MISC
-lamb NN I-NP O
-until IN I-SBAR O
-scientists NNS I-NP O
-determine VBP I-VP O
-whether IN I-SBAR O
-mad JJ I-NP O
-cow NN I-NP O
-disease NN I-NP O
-can MD I-VP O
-be VB I-VP O
-transmitted VBN I-VP O
-to TO I-PP O
-sheep NN I-NP O
-. . O O
-
-Germany NNP I-NP I-LOC
-'s POS B-NP O
-representative NN I-NP O
-to TO I-PP O
-the DT I-NP O
-European NNP I-NP I-ORG
-Union NNP I-NP I-ORG
-'s POS B-NP O
-veterinary JJ I-NP O
-committee NN I-NP O
-Werner NNP I-NP I-PER
-Zwingmann NNP I-NP I-PER
-said VBD I-VP O
-on IN I-PP O
-Wednesday NNP I-NP O
-consumers NNS I-NP O
-should MD I-VP O
-buy VB I-VP O
-sheepmeat NN I-NP O
-from IN I-PP O
-countries NNS I-NP O
-other JJ I-ADJP O
-than IN I-PP O
-Britain NNP I-NP I-LOC
-until IN I-SBAR O
-the DT I-NP O
-scientific JJ I-NP O
-advice NN I-NP O
-was VBD I-VP O
-clearer JJR I-ADJP O
-. . O O
-
-" " O O
-We PRP I-NP O
-do VBP I-VP O
-n't RB I-VP O
-support VB I-VP O
-any DT I-NP O
-such JJ I-NP O
-recommendation NN I-NP O
-because IN I-SBAR O
-we PRP I-NP O
-do VBP I-VP O
-n't RB I-VP O
-see VB I-VP O
-any DT I-NP O
-grounds NNS I-NP O
-for IN I-PP O
-it PRP I-NP O
-, , O O
-" " O O
-the DT I-NP O
-Commission NNP I-NP I-ORG
-'s POS B-NP O
-chief JJ I-NP O
-spokesman NN I-NP O
-Nikolaus NNP I-NP I-PER
-van NNP I-NP I-PER
-der FW I-NP I-PER
-Pas NNP I-NP I-PER
-told VBD I-VP O
-a DT I-NP O
-news NN I-NP O
-briefing NN I-NP O
-. . O O
-
-He PRP I-NP O
-said VBD I-VP O
-further JJ I-NP O
-scientific JJ I-NP O
-study NN I-NP O
-was VBD I-VP O
-required VBN I-VP O
-and CC O O
-if IN I-SBAR O
-it PRP I-NP O
-was VBD I-VP O
-found VBN I-VP O
-that IN I-SBAR O
-action NN I-NP O
-was VBD I-VP O
-needed VBN I-VP O
-it PRP I-NP O
-should MD I-VP O
-be VB I-VP O
-taken VBN I-VP O
-by IN I-PP O
-the DT I-NP O
-European NNP I-NP I-ORG
-Union NNP I-NP I-ORG
-. . O O
-
diff --git a/fluid/sequence_tagging_for_ner/imgs/convergence_curve.png b/fluid/sequence_tagging_for_ner/imgs/convergence_curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..bebdf7fd213a054246b9fea9957d405cf116bc55
Binary files /dev/null and b/fluid/sequence_tagging_for_ner/imgs/convergence_curve.png differ
diff --git a/fluid/sequence_tagging_for_ner/imgs/convergent_curve.png b/fluid/sequence_tagging_for_ner/imgs/convergent_curve.png
deleted file mode 100644
index 491b2895c24accafc1bfca3131292a2070ac1400..0000000000000000000000000000000000000000
Binary files a/fluid/sequence_tagging_for_ner/imgs/convergent_curve.png and /dev/null differ
diff --git a/fluid/sequence_tagging_for_ner/infer.py b/fluid/sequence_tagging_for_ner/infer.py
index 0e04e8797877bf9cc5dc77e44892deee412507aa..2d0bd9496ed2ec1db019a0124905093e0b12531a 100644
--- a/fluid/sequence_tagging_for_ner/infer.py
+++ b/fluid/sequence_tagging_for_ner/infer.py
@@ -1,14 +1,21 @@
import numpy as np
+
import paddle.fluid as fluid
import paddle.v2 as paddle
from network_conf import ner_net
import reader
-from utils import load_dict, load_reverse_dict, to_lodtensor
+from utils import load_dict, load_reverse_dict
+from utils_extend import to_lodtensor
def infer(model_path, batch_size, test_data_file, vocab_file, target_file,
use_gpu):
+ """
+ use the model under model_path to predict the test data, the result will be printed on the screen
+
+ return nothing
+ """
word_dict = load_dict(vocab_file)
word_reverse_dict = load_reverse_dict(vocab_file)
diff --git a/fluid/sequence_tagging_for_ner/reader.py b/fluid/sequence_tagging_for_ner/reader.py
deleted file mode 100644
index a817dd199987ae0050014595296fe4717ab198e4..0000000000000000000000000000000000000000
--- a/fluid/sequence_tagging_for_ner/reader.py
+++ /dev/null
@@ -1,65 +0,0 @@
-"""
-Conll03 dataset.
-"""
-import re
-
-__all__ = ["data_reader"]
-
-
-def canonicalize_digits(word):
- if any([c.isalpha() for c in word]): return word
- word = re.sub("\d", "DG", word)
- if word.startswith("DG"):
- word = word.replace(",", "") # remove thousands separator
- return word
-
-
-def canonicalize_word(word, wordset=None, digits=True):
- word = word.lower()
- if digits:
- if (wordset != None) and (word in wordset): return word
- word = canonicalize_digits(word) # try to canonicalize numbers
- if (wordset == None) or (word in wordset): return word
- else: return "UUUNKKK" # unknown token
-
-
-def data_reader(data_file, word_dict, label_dict):
- """
- The dataset can be obtained according to http://www.clips.uantwerpen.be/conll2003/ner/.
- It returns a reader creator, each sample in the reader includes:
- word id sequence, label id sequence and raw sentence.
-
- :return: reader creator
- :rtype: callable
- """
-
- def reader():
- UNK_IDX = word_dict["UUUNKKK"]
-
- sentence = []
- labels = []
- with open(data_file, "r") as f:
- for line in f:
- if len(line.strip()) == 0:
- if len(sentence) > 0:
- word_idx = [
- word_dict.get(
- canonicalize_word(w, word_dict), UNK_IDX)
- for w in sentence
- ]
- mark = [1 if w[0].isupper() else 0 for w in sentence]
- label_idx = [label_dict[l] for l in labels]
- yield word_idx, mark, label_idx
- sentence = []
- labels = []
- else:
- segs = line.strip().split()
- sentence.append(segs[0])
- # transform I-TYPE to BIO schema
- if segs[-1] != "O" and (len(labels) == 0 or
- labels[-1][1:] != segs[-1][1:]):
- labels.append("B" + segs[-1][1:])
- else:
- labels.append(segs[-1])
-
- return reader
diff --git a/fluid/sequence_tagging_for_ner/train.py b/fluid/sequence_tagging_for_ner/train.py
index 6073514d375802c550c807e431ffcd801294fb31..6ed77cd5ca1d504a8b79b4f87349242b5051c539 100644
--- a/fluid/sequence_tagging_for_ner/train.py
+++ b/fluid/sequence_tagging_for_ner/train.py
@@ -1,13 +1,14 @@
import os
import math
-
import numpy as np
+
import paddle.v2 as paddle
import paddle.fluid as fluid
import reader
from network_conf import ner_net
-from utils import logger, load_dict, get_embedding, to_lodtensor
+from utils import logger, load_dict
+from utils_extend import to_lodtensor, get_embedding
def test(exe, chunk_evaluator, inference_program, test_data, place):
diff --git a/fluid/sequence_tagging_for_ner/utils.py b/fluid/sequence_tagging_for_ner/utils.py
deleted file mode 100644
index 09b8e5fdbceb369cb4f4bf2c2a1e95723e2edbac..0000000000000000000000000000000000000000
--- a/fluid/sequence_tagging_for_ner/utils.py
+++ /dev/null
@@ -1,61 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-import logging
-
-import paddle.fluid as fluid
-
-import numpy as np
-
-logger = logging.getLogger("paddle")
-logger.setLevel(logging.INFO)
-
-
-def get_embedding(emb_file='data/wordVectors.txt'):
- """
- Get the trained word vector.
- """
- return np.loadtxt(emb_file, dtype='float32')
-
-
-def load_dict(dict_path):
- """
- Load the word dictionary from the given file.
- Each line of the given file is a word, which can include multiple columns
- seperated by tab.
-
- This function takes the first column (columns in a line are seperated by
- tab) as key and takes line number of a line as the key (index of the word
- in the dictionary).
- """
-
- return dict((line.strip().split("\t")[0], idx)
- for idx, line in enumerate(open(dict_path, "r").readlines()))
-
-
-def load_reverse_dict(dict_path):
- """
- Load the word dictionary from the given file.
- Each line of the given file is a word, which can include multiple columns
- seperated by tab.
-
- This function takes line number of a line as the key (index of the word in
- the dictionary) and the first column (columns in a line are seperated by
- tab) as the value.
- """
- return dict((idx, line.strip().split("\t")[0])
- for idx, line in enumerate(open(dict_path, "r").readlines()))
-
-
-def to_lodtensor(data, place):
- seq_lens = [len(seq) for seq in data]
- cur_len = 0
- lod = [cur_len]
- for l in seq_lens:
- cur_len += l
- lod.append(cur_len)
- flattened_data = np.concatenate(data, axis=0).astype("int64")
- flattened_data = flattened_data.reshape([len(flattened_data), 1])
- res = fluid.LoDTensor()
- res.set(flattened_data, place)
- res.set_lod([lod])
- return res
diff --git a/fluid/sequence_tagging_for_ner/utils_extend.py b/fluid/sequence_tagging_for_ner/utils_extend.py
new file mode 100644
index 0000000000000000000000000000000000000000..c069140334c1f2c65ee6bec4ae31b8d8b4bc0e4d
--- /dev/null
+++ b/fluid/sequence_tagging_for_ner/utils_extend.py
@@ -0,0 +1,27 @@
+import numpy as np
+import paddle.fluid as fluid
+
+
+def get_embedding(emb_file='data/wordVectors.txt'):
+ """
+ Get the trained word vector.
+ """
+ return np.loadtxt(emb_file, dtype='float32')
+
+
+def to_lodtensor(data, place):
+ """
+ convert data to lodtensor
+ """
+ seq_lens = [len(seq) for seq in data]
+ cur_len = 0
+ lod = [cur_len]
+ for l in seq_lens:
+ cur_len += l
+ lod.append(cur_len)
+ flattened_data = np.concatenate(data, axis=0).astype("int64")
+ flattened_data = flattened_data.reshape([len(flattened_data), 1])
+ res = fluid.LoDTensor()
+ res.set(flattened_data, place)
+ res.set_lod([lod])
+ return res