Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f5112adb
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f5112adb
编写于
1月 17, 2018
作者:
W
wangmeng28
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add fluid version of SE-ResNeXt
上级
0e844a1c
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
282 addition
and
0 deletion
+282
-0
fluid/image_classification/SE-ResNeXt.py
fluid/image_classification/SE-ResNeXt.py
+155
-0
fluid/image_classification/reader.py
fluid/image_classification/reader.py
+127
-0
未找到文件。
fluid/image_classification/SE-ResNeXt.py
0 → 100644
浏览文件 @
f5112adb
import
os
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
import
reader
def
conv_bn_layer
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
/
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
def
squeeze_excitation
(
input
,
num_channels
,
reduction_ratio
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
num_channels
/
reduction_ratio
,
act
=
'relu'
)
excitation
=
fluid
.
layers
.
fc
(
input
=
squeeze
,
size
=
num_channels
,
act
=
'sigmoid'
)
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
excitation
,
axis
=
0
)
return
scale
def
shortcut
(
input
,
ch_out
,
stride
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
)
else
:
return
input
def
bottleneck_block
(
input
,
num_filters
,
stride
,
cardinality
,
reduction_ratio
):
conv0
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
groups
=
cardinality
,
act
=
'relu'
)
conv2
=
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
2
,
filter_size
=
1
,
act
=
None
)
scale
=
squeeze_excitation
(
input
=
conv2
,
num_channels
=
num_filters
*
2
,
reduction_ratio
=
reduction_ratio
)
short
=
shortcut
(
input
,
num_filters
*
2
,
stride
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
def
SE_ResNeXt
(
input
,
class_dim
,
infer
=
False
):
cardinality
=
64
reduction_ratio
=
16
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
128
,
256
,
512
,
1024
]
conv
=
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
128
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
cardinality
,
reduction_ratio
=
reduction_ratio
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
if
not
infer
:
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
else
:
drop
=
pool
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
def
train
(
learning_rate
,
batch_size
,
num_passes
,
model_save_dir
=
'model'
):
class_dim
=
1000
image_shape
=
[
3
,
224
,
224
]
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
out
=
SE_ResNeXt
(
input
=
image
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
/
batch_size
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
*
batch_size
))
opts
=
optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
out
,
label
=
label
)
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
test_accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
out
,
label
=
label
)
test_target
=
[
avg_cost
]
+
test_accuracy
.
metrics
+
test_accuracy
.
states
inference_program
=
fluid
.
io
.
get_inference_program
(
test_target
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
train_reader
=
paddle
.
batch
(
datareader
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
datareader
.
test
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
for
pass_id
in
range
(
num_passes
):
accuracy
.
reset
(
exe
)
for
batch_id
,
data
in
enumerate
(
train_reader
()):
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
print
(
"Pass {0}, batch {1}, loss {2}, acc {3}"
.
format
(
pass_id
,
batch_id
,
loss
[
0
],
acc
[
0
]))
pass_acc
=
accuracy
.
eval
(
exe
)
test_accuracy
.
reset
(
exe
)
for
data
in
test_reader
():
out
,
acc
=
exe
.
run
(
inference_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
test_accuracy
.
metrics
)
test_pass_acc
=
test_accuracy
.
eval
(
exe
)
print
(
"End pass {0}, train_acc {1}, test_acc {2}"
.
format
(
pass_id
,
pass_acc
,
test_pass_acc
))
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
pass_id
))
fluid
.
io
.
save_inference_model
(
model_path
,
[
'image'
],
[
out
],
exe
)
if
__name__
==
'__main__'
:
train
(
learning_rate
=
0.1
,
batch_size
=
7
,
num_passes
=
100
)
fluid/image_classification/reader.py
0 → 100644
浏览文件 @
f5112adb
import
os
import
random
import
functools
import
numpy
as
np
import
paddle.v2
as
paddle
from
PIL
import
Image
,
ImageEnhance
random
.
seed
(
0
)
_R_MEAN
=
123.0
_G_MEAN
=
117.0
_B_MEAN
=
104.0
DATA_DIM
=
224
THREAD
=
8
BUF_SIZE
=
1024
DATA_DIR
=
'ILSVRC2012'
TRAIN_LIST
=
'ILSVRC2012/train_list.txt'
TEST_LIST
=
'ILSVRC2012/test_list.txt'
img_mean
=
np
.
array
([
_R_MEAN
,
_G_MEAN
,
_B_MEAN
]).
reshape
((
3
,
1
,
1
))
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
resized_width
=
int
(
round
(
img
.
size
[
0
]
*
percent
))
resized_height
=
int
(
round
(
img
.
size
[
1
]
*
percent
))
img
=
img
.
resize
((
resized_width
,
resized_height
),
Image
.
LANCZOS
)
return
img
def
crop_image
(
img
,
target_size
,
center
):
width
,
height
=
img
.
size
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
/
2
h_start
=
(
height
-
size
)
/
2
else
:
w_start
=
random
.
randint
(
0
,
width
-
size
)
h_start
=
random
.
randint
(
0
,
height
-
size
)
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
.
crop
((
w_start
,
h_start
,
w_end
,
h_end
))
return
img
def
distort_color
(
img
):
def
random_brightness
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Brightness
(
img
).
enhance
(
e
)
def
random_contrast
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Contrast
(
img
).
enhance
(
e
)
def
random_color
(
img
,
lower
=
0.5
,
upper
=
1.5
):
e
=
random
.
uniform
(
lower
,
upper
)
return
ImageEnhance
.
Color
(
img
).
enhance
(
e
)
ops
=
[
random_brightness
,
random_contrast
,
random_color
]
random
.
shuffle
(
ops
)
img
=
ops
[
0
](
img
)
img
=
ops
[
1
](
img
)
img
=
ops
[
2
](
img
)
return
img
def
process_image
(
sample
,
mode
):
img_path
=
sample
[
0
]
img
=
Image
.
open
(
img_path
)
if
mode
==
'train'
:
img
=
resize_short
(
img
,
DATA_DIM
+
32
)
else
:
img
=
resize_short
(
img
,
DATA_DIM
)
img
=
crop_image
(
img
,
target_size
=
DATA_DIM
,
center
=
(
mode
!=
'train'
))
if
mode
==
'train'
:
img
=
distort_color
(
img
)
if
random
.
randint
(
0
,
1
)
==
1
:
img
=
img
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
if
img
.
mode
!=
'RGB'
:
img
=
img
.
convert
(
'RGB'
)
img
=
np
.
array
(
img
).
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
img
-=
img_mean
if
mode
==
'train'
or
mode
==
'test'
:
return
img
,
sample
[
1
]
elif
mode
==
'infer'
:
return
img
def
_reader_creator
(
file_list
,
mode
,
shuffle
=
False
):
def
reader
():
with
open
(
file_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
random
.
shuffle
(
lines
)
for
line
in
lines
:
if
mode
==
'train'
or
mode
==
'test'
:
img_path
,
label
=
line
.
split
()
img_path
=
os
.
path
.
join
(
DATA_DIR
,
img_path
)
yield
img_path
,
int
(
label
)
elif
mode
==
'infer'
:
img_path
=
os
.
path
.
join
(
DATA_DIR
,
line
)
yield
[
img_path
]
mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
THREAD
,
BUF_SIZE
)
def
train
():
return
_reader_creator
(
TRAIN_LIST
,
'train'
,
shuffle
=
True
)
def
test
():
return
_reader_creator
(
TEST_LIST
,
'test'
,
shuffle
=
False
)
def
infer
(
file_list
):
return
_reader_creator
(
file_list
,
'infer'
,
shuffle
=
False
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录