diff --git a/youtube_recall/README.cn.md b/youtube_recall/README.cn.md index 4c575ac28cd5f2b9b89aa8143f5b790383d85e8b..1981b9d9d0ad2f522518e61f88c1936282445383 100644 --- a/youtube_recall/README.cn.md +++ b/youtube_recall/README.cn.md @@ -172,7 +172,7 @@ def _build_embedding_layer(self): ``` ### 隐层 -我们对原paper中做了改进,历史用户点击视频序列,经过embedding后,不再是加权求平均。而是连接lstm层,将用户点击的先后次序纳入模型,再在时间序列上做最大池化,得到定长的向量表示,从而使模型学习到与点击时序相关的隐藏信息。考虑到数据规模与训练性能,我们只用了两个Relu层,也有不错的效果。 +对原paper中做了改进,历史用户点击视频序列,经过embedding后,不再是加权求平均。而是连接lstm层,将用户点击的先后次序纳入模型,再在时间序列上做最大池化,得到定长的向量表示,从而使模型学习到与点击时序相关的隐藏信息。考虑到数据规模与训练性能,这边只用了两个Relu层,也有不错的效果。 ```python self._rnn_cell = paddle.networks.simple_lstm( input=self._history_clicked_items_emb, size=64) @@ -274,9 +274,9 @@ python infer.py --infer_set_path='./data/infer.txt' \ ``` ## 在线预测 -在线预测的时候,我们采用近似最近邻(approximate nearest neighbor-ANN)算法直接用用户向量查询最相关的topN个视频内容。由于我们的ANN暂时只支持cosine,而模型是根据内积排序的,两者效果差异太大。 +在线预测的时候,采用近似最近邻(approximate nearest neighbor-ANN)算法直接用用户向量查询最相关的topN个视频内容。很多ann算法只支持cosine距离,而模型是根据内积排序的,两者效果差异较大。 -为此,我们的解决方案是,对用户和视频向量,作SIMPLE-LSH变换\[[4](#参考文献)\],使内积排序与cosin排序等价。 +为此,这边的解决方案是,对用户和视频向量,作SIMPLE-LSH变换\[[4](#参考文献)\],使内积排序与cosin排序等价。 具体如下: - 对于视频向量![](https://www.zhihu.com/equation?tex=%5Cmathbf%7Bv%7D%5Cin%20%5Cmathbb%7BR%7D%5EN),有![](https://www.zhihu.com/equation?tex=%5Cleft%20%5C%7C%20%5Cmathbf%7Bv%7D%20%5Cright%20%5C%7C%5Cleqslant%20m),变换后的![](https://www.zhihu.com/equation?tex=%5Ctilde%7B%5Cmathbf%7Bv%7D%7D%5Cin%20%5Cmathbb%7BR%7D%5E%7BN%2B1%7D),![](https://www.zhihu.com/equation?tex=%5Ctilde%7B%5Cmathbf%7Bv%7D%7D%20%3D%20%5B%5Cfrac%7B%5Cmathbf%7Bv%7D%7D%7Bm%7D%3B%20%5Csqrt%7B1%20-%5Cleft%20%5C%7C%20%5Cmathbf%7B%5Cfrac%7B%5Cmathbf%7Bv%7D%7D%7Bm%7D%7B%7D%7D%20%5Cright%20%5C%7C%5E2%7D%5D)。 @@ -296,7 +296,7 @@ python user_vector.py --infer_set_path='./data/infer.txt' \ python item_vector.py --model_path='./output/model/model_pass_00000.tar.gz' \ --feature_dict='./output/feature_dict.pkl' ``` - +因为实时召回需要大量机器资源,这边也可以离线挖掘产出数据,线上召回使用挖掘好的数据。可以产出最热,用户个性化,视频相关等数据。下面的示例产出了用户个性化数据。 ## 参考文献 1. Covington, Paul, Jay Adams, and Emre Sargin. "Deep neural networks for youtube recommendations." Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016.