Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f3c247d3
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f3c247d3
编写于
3月 28, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Decouple the program desc with batch_size in Transformer.
上级
35308832
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
144 addition
and
101 deletion
+144
-101
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+3
-1
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+55
-32
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+76
-55
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+10
-13
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
f3c247d3
...
...
@@ -92,7 +92,8 @@ pos_enc_param_names = (
encoder_input_data_names
=
(
"src_word"
,
"src_pos"
,
"src_slf_attn_bias"
,
)
"src_slf_attn_bias"
,
"src_data_shape"
,
)
# Names of all data layers in decoder listed in order.
decoder_input_data_names
=
(
...
...
@@ -100,6 +101,7 @@ decoder_input_data_names = (
"trg_pos"
,
"trg_slf_attn_bias"
,
"trg_src_attn_bias"
,
"trg_data_shape"
,
"enc_output"
,
)
# Names of label related data layers listed in order.
...
...
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
f3c247d3
...
...
@@ -13,8 +13,8 @@ from train import pad_batch_data
def
translate_batch
(
exe
,
src_words
,
encoder
,
enc_in_names
,
enc_out_names
,
decoder
,
dec_in_names
,
dec_out_names
,
beam_size
,
max_length
,
n_best
,
batch_size
,
n_head
,
src_pad_idx
,
trg
_pad_idx
,
bos_idx
,
eos_idx
):
n_best
,
batch_size
,
n_head
,
d_model
,
src
_pad_idx
,
trg_pad_idx
,
bos_idx
,
eos_idx
):
"""
Run the encoder program once and run the decoder program multiple times to
implement beam search externally.
...
...
@@ -28,6 +28,10 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
return_pos
=
True
,
return_attn_bias
=
True
,
return_max_len
=
True
)
enc_in_data
=
enc_in_data
[:
-
1
]
+
[
np
.
array
(
[
batch_size
,
enc_in_data
[
-
1
],
d_model
],
dtype
=
"int32"
)
]
# Append the data shape input.
enc_output
=
exe
.
run
(
encoder
,
feed
=
dict
(
zip
(
enc_in_names
,
enc_in_data
)),
fetch_list
=
enc_out_names
)[
0
]
...
...
@@ -35,11 +39,16 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
# Beam Search.
# To store the beam info.
scores
=
np
.
zeros
((
batch_size
,
beam_size
),
dtype
=
"float32"
)
prev_branchs
=
[[]
]
*
batch_size
next_ids
=
[[]
]
*
batch_size
# Use beam_
map to map the instance idx in batch to beam idx
, since the
prev_branchs
=
[[]
for
i
in
range
(
batch_size
)]
next_ids
=
[[]
for
i
in
range
(
batch_size
)]
# Use beam_
inst_map to map beam idx to the instance idx in batch
, since the
# size of feeded batch is changing.
beam_map
=
range
(
batch_size
)
beam_inst_map
=
{
beam_idx
:
inst_idx
for
inst_idx
,
beam_idx
in
enumerate
(
range
(
batch_size
))
}
# Use active_beams to recode the alive.
active_beams
=
range
(
batch_size
)
def
beam_backtrace
(
prev_branchs
,
next_ids
,
n_best
=
beam_size
,
add_bos
=
True
):
"""
...
...
@@ -64,8 +73,8 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_words
=
np
.
array
(
[[
bos_idx
]]
*
batch_size
*
beam_size
,
dtype
=
"int64"
)
trg_pos
=
np
.
array
([[
1
]]
*
batch_size
*
beam_size
,
dtype
=
"int64"
)
src_max_length
,
src_slf_attn_bias
,
trg_max_len
=
enc_in_data
[
-
1
],
enc_in_data
[
-
2
],
1
src_max_length
,
src_slf_attn_bias
,
trg_max_len
=
enc_in_data
[
-
1
][
1
],
enc_in_data
[
-
2
],
1
# This is used to remove attention on subsequent words.
trg_slf_attn_bias
=
np
.
ones
((
batch_size
*
beam_size
,
trg_max_len
,
trg_max_len
))
...
...
@@ -77,16 +86,20 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_length
,
:],
[
beam_size
,
1
,
trg_max_len
,
1
])
enc_output
=
np
.
tile
(
enc_output
,
[
beam_size
,
1
,
1
])
return
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
trg_data_shape
=
np
.
array
(
[
batch_size
*
beam_size
,
trg_max_len
,
d_model
],
dtype
=
"int32"
)
enc_output
=
np
.
tile
(
enc_output
[:,
np
.
newaxis
],
[
1
,
beam_size
,
1
,
1
]).
reshape
(
[
-
1
,
enc_output
.
shape
[
-
2
],
enc_output
.
shape
[
-
1
]])
return
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
trg_data_shape
,
enc_output
def
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
):
def
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
,
beam_inst_map
):
"""
Update the input data of decoder mainly by slicing from the previous
input data and dropping the finished instance beams.
"""
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
=
dec_in_data
trg_cur_len
=
len
(
next_ids
[
0
])
+
1
# include the <bos>
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
trg_data_shape
,
enc_output
=
dec_in_data
trg_cur_len
=
trg_slf_attn_bias
.
shape
[
-
1
]
+
1
trg_words
=
np
.
array
(
[
beam_backtrace
(
...
...
@@ -98,6 +111,7 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_pos
=
np
.
array
(
[
range
(
1
,
trg_cur_len
+
1
)]
*
len
(
active_beams
)
*
beam_size
,
dtype
=
"int64"
).
reshape
([
-
1
,
1
])
active_beams
=
[
beam_inst_map
[
beam_idx
]
for
beam_idx
in
active_beams
]
active_beams_indice
=
(
(
np
.
array
(
active_beams
)
*
beam_size
)[:,
np
.
newaxis
]
+
np
.
array
(
range
(
beam_size
))[
np
.
newaxis
,
:]).
flatten
()
...
...
@@ -112,8 +126,11 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_src_attn_bias
=
np
.
tile
(
trg_src_attn_bias
[
active_beams_indice
,
:,
::
trg_src_attn_bias
.
shape
[
2
],
:],
[
1
,
1
,
trg_cur_len
,
1
])
trg_data_shape
=
np
.
array
(
[
len
(
active_beams
)
*
beam_size
,
trg_cur_len
,
d_model
],
dtype
=
"int32"
)
enc_output
=
enc_output
[
active_beams_indice
,
:,
:]
return
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
return
trg_words
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
trg_data_shape
,
enc_output
dec_in_data
=
init_dec_in_data
(
batch_size
,
beam_size
,
enc_in_data
,
enc_output
)
...
...
@@ -122,13 +139,16 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
feed
=
dict
(
zip
(
dec_in_names
,
dec_in_data
)),
fetch_list
=
dec_out_names
)[
0
]
predict_all
=
np
.
log
(
predict_all
.
reshape
([
len
(
beam_
map
)
*
beam_size
,
i
+
1
,
-
1
])[:,
-
1
,
:])
predict_all
=
(
predict_all
+
scores
[
beam_map
].
reshape
(
[
len
(
beam_map
)
*
beam_size
,
-
1
])).
reshape
(
[
len
(
beam_map
),
beam_size
,
-
1
])
predict_all
.
reshape
([
len
(
beam_
inst_map
)
*
beam_size
,
i
+
1
,
-
1
])
[:,
-
1
,
:])
predict_all
=
(
predict_all
+
scores
[
active_beams
].
reshape
(
[
len
(
beam_
inst_
map
)
*
beam_size
,
-
1
])).
reshape
(
[
len
(
beam_
inst_
map
),
beam_size
,
-
1
])
active_beams
=
[]
for
inst_idx
,
beam_idx
in
enumerate
(
beam_map
):
for
beam_idx
in
range
(
batch_size
):
if
not
beam_inst_map
.
has_key
(
beam_idx
):
continue
inst_idx
=
beam_inst_map
[
beam_idx
]
predict
=
(
predict_all
[
inst_idx
,
:,
:]
if
i
!=
0
else
predict_all
[
inst_idx
,
0
,
:]).
flatten
()
top_k_indice
=
np
.
argpartition
(
predict
,
-
beam_size
)[
-
beam_size
:]
...
...
@@ -141,13 +161,20 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
next_ids
[
beam_idx
].
append
(
top_scores_ids
%
predict_all
.
shape
[
-
1
])
if
next_ids
[
beam_idx
][
-
1
][
0
]
!=
eos_idx
:
active_beams
.
append
(
beam_idx
)
beam_map
=
active_beams
if
len
(
beam_map
)
==
0
:
if
len
(
active_beams
)
==
0
:
break
dec_in_data
=
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
)
dec_in_data
=
update_dec_in_data
(
dec_in_data
,
next_ids
,
active_beams
,
beam_inst_map
)
beam_inst_map
=
{
beam_idx
:
inst_idx
for
inst_idx
,
beam_idx
in
enumerate
(
active_beams
)
}
# Decode beams and select n_best sequences for each instance by backtrace.
seqs
=
[
beam_backtrace
(
prev_branchs
[
beam_idx
],
next_ids
[
beam_idx
],
n_best
)]
seqs
=
[
beam_backtrace
(
prev_branchs
[
beam_idx
],
next_ids
[
beam_idx
],
n_best
)
for
beam_idx
in
range
(
batch_size
)
]
return
seqs
,
scores
[:,
:
n_best
].
tolist
()
...
...
@@ -155,10 +182,8 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
def
main
():
place
=
fluid
.
CUDAPlace
(
0
)
if
InferTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# The current program desc is coupled with batch_size and the only
# supported batch size is 1 currently.
encoder_program
=
fluid
.
Program
()
model
.
batch_size
=
InferTaskConfig
.
batch_size
with
fluid
.
program_guard
(
main_program
=
encoder_program
):
enc_output
=
encoder
(
ModelHyperParams
.
src_vocab_size
+
1
,
...
...
@@ -168,7 +193,6 @@ def main():
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
pos_pad_idx
)
model
.
batch_size
=
InferTaskConfig
.
batch_size
*
InferTaskConfig
.
beam_size
decoder_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
=
decoder_program
):
predict
=
decoder
(
...
...
@@ -213,16 +237,15 @@ def main():
trg_idx2word
=
paddle
.
dataset
.
wmt16
.
get_dict
(
"de"
,
dict_size
=
ModelHyperParams
.
trg_vocab_size
,
reverse
=
True
)
for
batch_id
,
data
in
enumerate
(
test_data
()):
batch_seqs
,
batch_scores
=
translate_batch
(
exe
,
[
item
[
0
]
for
item
in
data
],
encoder_program
,
encoder_input_data_names
,
[
enc_output
.
name
],
decoder_program
,
decoder_input_data_names
,
[
predict
.
name
],
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_length
,
InferTaskConfig
.
n_best
,
len
(
data
),
ModelHyperParams
.
n_head
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
bos
_idx
,
ModelHyperParams
.
eos_idx
)
len
(
data
),
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad
_idx
,
ModelHyperParams
.
bos_idx
,
ModelHyperParams
.
eos_idx
)
for
i
in
range
(
len
(
batch_seqs
)):
seqs
=
batch_seqs
[
i
]
scores
=
batch_scores
[
i
]
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
f3c247d3
...
...
@@ -7,9 +7,6 @@ import paddle.fluid.layers as layers
from
config
import
TrainTaskConfig
,
pos_enc_param_names
,
\
encoder_input_data_names
,
decoder_input_data_names
,
label_data_names
# FIXME(guosheng): Remove out the batch_size from the model.
batch_size
=
TrainTaskConfig
.
batch_size
def
position_encoding_init
(
n_position
,
d_pos_vec
):
"""
...
...
@@ -83,9 +80,10 @@ def multi_head_attention(queries,
return
x
hidden_size
=
x
.
shape
[
-
1
]
# FIXME(guosheng): Decouple the program desc with batch_size.
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped
=
layers
.
reshape
(
x
=
x
,
shape
=
[
batch_size
,
-
1
,
n_head
,
hidden_size
//
n_head
])
x
=
x
,
shape
=
[
0
,
-
1
,
n_head
,
hidden_size
//
n_head
])
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
...
...
@@ -101,26 +99,20 @@ def multi_head_attention(queries,
raise
ValueError
(
"Input(x) should be a 4-D Tensor."
)
trans_x
=
layers
.
transpose
(
x
,
perm
=
[
0
,
2
,
1
,
3
])
# FIXME(guosheng): Decouple the program desc with batch_size.
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return
layers
.
reshape
(
x
=
trans_x
,
shape
=
map
(
int
,
[
batch_size
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
shape
=
map
(
int
,
[
0
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
def
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_model
,
dropout_rate
):
"""
Scaled Dot-Product Attention
"""
# FIXME(guosheng): Optimize the shape in reshape_op or softmax_op.
# The current implementation of softmax_op only supports 2D tensor,
# consequently it cannot be directly used here.
# If to use the reshape_op, Besides, the shape of product inferred in
# compile-time is not the actual shape in run-time. It cann't be used
# to set the attribute of reshape_op.
# So, here define the softmax for temporary solution.
# FIXME(guosheng): Remove __softmax when softmax_op supporting high
# rank tensors. softmax_op only supports 2D tensor currently.
# Otherwise, add extra input data to reshape.
def
__softmax
(
x
,
eps
=
1e-9
):
exp_out
=
layers
.
exp
(
x
=
x
)
sum_out
=
layers
.
reduce_sum
(
exp_out
,
dim
=-
1
,
keep_dim
=
False
)
...
...
@@ -131,6 +123,7 @@ def multi_head_attention(queries,
weights
=
__softmax
(
layers
.
elementwise_add
(
x
=
product
,
y
=
attn_bias
)
if
attn_bias
else
product
)
# weights = __softmax(product)
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
...
...
@@ -177,7 +170,7 @@ def positionwise_feed_forward(x, d_inner_hid, d_hid):
return
out
def
pre_post_process_layer
(
prev_out
,
out
,
process_cmd
,
dropout
=
0.
):
def
pre_post_process_layer
(
prev_out
,
out
,
process_cmd
,
dropout
_rate
=
0.
):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
...
...
@@ -195,8 +188,9 @@ def pre_post_process_layer(prev_out, out, process_cmd, dropout=0.):
param_attr
=
fluid
.
initializer
.
Constant
(
1.
),
bias_attr
=
fluid
.
initializer
.
Constant
(
0.
))
elif
cmd
==
"d"
:
# add dropout
if
dropout
:
out
=
layers
.
dropout
(
out
,
dropout_prob
=
dropout
,
is_test
=
False
)
if
dropout_rate
:
out
=
layers
.
dropout
(
out
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
return
out
...
...
@@ -210,8 +204,9 @@ def prepare_encoder(src_word,
src_emb_dim
,
src_pad_idx
,
src_max_len
,
dropout
=
0.
,
dropout
_rate
=
0.
,
pos_pad_idx
=
0
,
src_data_shape
=
None
,
pos_enc_param_name
=
None
):
"""Add word embeddings and position encodings.
The output tensor has a shape of:
...
...
@@ -231,12 +226,13 @@ def prepare_encoder(src_word,
param_attr
=
fluid
.
ParamAttr
(
name
=
pos_enc_param_name
,
trainable
=
False
))
enc_input
=
src_word_emb
+
src_pos_enc
# FIXME(guosheng): Decouple the program desc with batch_size.
enc_input
=
layers
.
reshape
(
x
=
enc_input
,
shape
=
[
batch_size
,
-
1
,
src_emb_dim
])
enc_input
=
layers
.
reshape
(
x
=
enc_input
,
shape
=
[
-
1
,
src_max_len
,
src_emb_dim
],
actual_shape
=
src_data_shape
)
return
layers
.
dropout
(
enc_input
,
dropout_prob
=
dropout
,
is_test
=
False
)
if
dropout
else
enc_input
enc_input
,
dropout_prob
=
dropout
_rate
,
is_test
=
False
)
if
dropout
_rate
else
enc_input
prepare_encoder
=
partial
(
...
...
@@ -386,18 +382,21 @@ def decoder(dec_input,
def
make_inputs
(
input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
is_pos
,
slf_attn_bias_flag
,
src_attn_bias_flag
,
enc_output_flag
=
False
):
is_pos
=
True
,
slf_attn_bias_flag
=
True
,
src_attn_bias_flag
=
True
,
enc_output_flag
=
False
,
data_shape_flag
=
True
):
"""
Define the input data layers for the transformer model.
"""
input_layers
=
[]
# The shapes here act as placeholder.
# The shapes set here is to pass the infer-shape in compile time.
batch_size
=
1
# Only for the infer-shape in compile time.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
# The actual data shape of word is:
# [batch_size * max_len_in_batch, 1]
word
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
*
max_length
,
1
],
...
...
@@ -405,6 +404,8 @@ def make_inputs(input_data_names,
append_batch_size
=
False
)
input_layers
+=
[
word
]
# This is used for position data or label weight.
# The actual data shape of pos is:
# [batch_size * max_len_in_batch, 1]
pos
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
*
max_length
,
1
],
...
...
@@ -415,6 +416,8 @@ def make_inputs(input_data_names,
# This input is used to remove attention weights on paddings for the
# encoder and to remove attention weights on subsequent words for the
# decoder.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, n_head, max_len_in_batch, max_len_in_batch]
slf_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
...
...
@@ -423,13 +426,26 @@ def make_inputs(input_data_names,
input_layers
+=
[
slf_attn_bias
]
if
src_attn_bias_flag
:
# This input is used to remove attention weights on paddings.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, n_head, trg_max_len_in_batch, src_max_len_in_batch]
src_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
input_layers
+=
[
src_attn_bias
]
if
data_shape_flag
:
# This input is used to reshape.
data_shape
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
3
],
dtype
=
"int32"
,
append_batch_size
=
False
)
input_layers
+=
[
data_shape
]
if
enc_output_flag
:
# This input is used in independent decoder program for inference.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, max_len_in_batch, d_model]
enc_output
=
layers
.
data
(
name
=
input_data_names
[
len
(
input_layers
)],
shape
=
[
batch_size
,
max_length
,
d_model
],
...
...
@@ -453,8 +469,8 @@ def transformer(
src_pad_idx
,
trg_pad_idx
,
pos_pad_idx
,
):
enc_input
_layer
s
=
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
True
,
True
,
False
)
enc_inputs
=
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
max_length
,
True
,
True
,
False
)
enc_output
=
wrap_encoder
(
src_vocab_size
,
...
...
@@ -468,10 +484,10 @@ def transformer(
dropout_rate
,
src_pad_idx
,
pos_pad_idx
,
enc_input
_layer
s
,
)
enc_inputs
,
)
dec_input
_layer
s
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
True
,
True
,
True
)
dec_inputs
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
max_length
,
True
,
True
,
True
)
predict
=
wrap_decoder
(
trg_vocab_size
,
...
...
@@ -485,13 +501,13 @@ def transformer(
dropout_rate
,
trg_pad_idx
,
pos_pad_idx
,
dec_input
_layer
s
,
dec_inputs
,
enc_output
,
)
# Padding index do not contribute to the total loss. The weights is used to
# cancel padding index in calculating the loss.
gold
,
weights
=
make_inputs
(
label_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
False
,
False
,
False
)
gold
,
weights
=
make_inputs
(
label_data_names
,
n_head
,
d_model
,
max_length
,
False
,
False
,
False
,
False
,
False
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
gold
)
weighted_cost
=
cost
*
weights
return
layers
.
reduce_sum
(
weighted_cost
),
predict
...
...
@@ -508,17 +524,18 @@ def wrap_encoder(src_vocab_size,
dropout_rate
,
src_pad_idx
,
pos_pad_idx
,
enc_input
_layer
s
=
None
):
enc_inputs
=
None
):
"""
The wrapper assembles together all needed layers for the encoder.
"""
if
enc_input
_layer
s
is
None
:
if
enc_inputs
is
None
:
# This is used to implement independent encoder program in inference.
src_word
,
src_pos
,
src_slf_attn_bias
=
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
True
,
True
,
False
)
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
=
make_inputs
(
encoder_input_data_names
,
n_head
,
d_model
,
max_length
,
True
,
True
,
False
)
else
:
src_word
,
src_pos
,
src_slf_attn_bias
=
enc_input_layers
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
=
enc_inputs
enc_input
=
prepare_encoder
(
src_word
,
src_pos
,
...
...
@@ -526,7 +543,9 @@ def wrap_encoder(src_vocab_size,
d_model
,
src_pad_idx
,
max_length
,
dropout_rate
,
)
dropout_rate
,
pos_pad_idx
,
src_data_shape
,
)
enc_output
=
encoder
(
enc_input
,
src_slf_attn_bias
,
...
...
@@ -551,18 +570,18 @@ def wrap_decoder(trg_vocab_size,
dropout_rate
,
trg_pad_idx
,
pos_pad_idx
,
dec_input
_layer
s
=
None
,
dec_inputs
=
None
,
enc_output
=
None
):
"""
The wrapper assembles together all needed layers for the decoder.
"""
if
dec_input
_layer
s
is
None
:
if
dec_inputs
is
None
:
# This is used to implement independent decoder program in inference.
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
enc_output
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
batch_size
,
max_length
,
True
,
True
,
True
,
True
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
trg_data_shape
,
enc_output
=
make_inputs
(
decoder_input_data_names
,
n_head
,
d_model
,
max_length
,
True
,
True
,
True
,
True
)
else
:
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
=
dec_input_layer
s
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
trg_data_shape
=
dec_input
s
dec_input
=
prepare_decoder
(
trg_word
,
...
...
@@ -571,7 +590,9 @@ def wrap_decoder(trg_vocab_size,
d_model
,
trg_pad_idx
,
max_length
,
dropout_rate
,
)
dropout_rate
,
pos_pad_idx
,
trg_data_shape
,
)
dec_output
=
decoder
(
dec_input
,
enc_output
,
...
...
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
f3c247d3
...
...
@@ -56,7 +56,7 @@ def pad_batch_data(insts,
def
prepare_batch_input
(
insts
,
input_data_names
,
src_pad_idx
,
trg_pad_idx
,
max_length
,
n_head
):
n_head
,
d_model
):
"""
Put all padded data needed by training into a dict.
"""
...
...
@@ -69,10 +69,13 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
lbl_word
=
pad_batch_data
([
inst
[
2
]
for
inst
in
insts
],
trg_pad_idx
,
n_head
,
False
,
False
,
False
,
False
)
lbl_weight
=
(
lbl_word
!=
trg_pad_idx
).
astype
(
"float32"
).
reshape
([
-
1
,
1
])
src_data_shape
=
np
.
array
([
len
(
insts
),
src_max_len
,
d_model
],
dtype
=
"int32"
)
trg_data_shape
=
np
.
array
([
len
(
insts
),
trg_max_len
,
d_model
],
dtype
=
"int32"
)
input_dict
=
dict
(
zip
(
input_data_names
,
[
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
src_word
,
src_pos
,
src_slf_attn_bias
,
src_data_shape
,
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
trg_data_shape
,
lbl_word
,
lbl_weight
]))
return
input_dict
...
...
@@ -119,13 +122,11 @@ def main():
def
test
(
exe
):
test_costs
=
[]
for
batch_id
,
data
in
enumerate
(
val_data
()):
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
continue
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
)
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
test_cost
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
cost
])[
0
]
...
...
@@ -143,15 +144,11 @@ def main():
for
pass_id
in
xrange
(
TrainTaskConfig
.
pass_num
):
for
batch_id
,
data
in
enumerate
(
train_data
()):
# The current program desc is coupled with batch_size, thus all
# mini-batches must have the same number of instances currently.
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
continue
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
)
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
lr_scheduler
.
update_learning_rate
(
data_input
)
outs
=
exe
.
run
(
fluid
.
framework
.
default_main_program
(),
feed
=
data_input
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录