diff --git a/fluid/PaddleCV/face_detection/README_cn.md b/fluid/PaddleCV/face_detection/README_cn.md index 9f165f781f7c931913053fac85bf667c7b360466..80485009d24e278a00b3d21001602fbe6ef9eef6 100644 --- a/fluid/PaddleCV/face_detection/README_cn.md +++ b/fluid/PaddleCV/face_detection/README_cn.md @@ -1,8 +1,3 @@ -运行本目录下的程序示例需要使用 PaddlePaddle 最新的 develop branch 版本。如果您的 PaddlePaddle 安装版本低于此要求,请按照[安装文档](http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_cn.html)中的说明更新 PaddlePaddle 安装版本。 - ---- - - ## Pyramidbox 人脸检测 ## Table of Contents diff --git a/fluid/PaddleCV/faster_rcnn/image/Faster_RCNN.jpg b/fluid/PaddleCV/faster_rcnn/image/Faster_RCNN.jpg index 68ea75863902094337165d50d8ec0960264d9e25..c2ab8085c914979eb23a59734d54797b6580e956 100644 Binary files a/fluid/PaddleCV/faster_rcnn/image/Faster_RCNN.jpg and b/fluid/PaddleCV/faster_rcnn/image/Faster_RCNN.jpg differ diff --git a/fluid/PaddleCV/image_classification/dist_train/README.md b/fluid/PaddleCV/image_classification/dist_train/README.md index 282a026acf1ee6d5b1c17aa05a2a8f734047c006..a595a540adfa770253909e432e99a27228d5f062 100644 --- a/fluid/PaddleCV/image_classification/dist_train/README.md +++ b/fluid/PaddleCV/image_classification/dist_train/README.md @@ -9,7 +9,7 @@ Before getting started, please make sure you have go throught the imagenet [Data 1. The entrypoint file is `dist_train.py`, some important flags are as follows: - - `model`, the model to run with, such as `ResNet50`, `ResNet101` and etc.. + - `model`, the model to run with, default is the fine tune model `DistResnet`. - `batch_size`, the batch_size per device. - `update_method`, specify the update method, can choose from local, pserver or nccl2. - `device`, use CPU or GPU device. @@ -35,14 +35,14 @@ In this example, we launched 4 parameter server instances and 4 trainer instance 1. launch parameter server process - ``` python + ``` bash PADDLE_TRAINING_ROLE=PSERVER \ PADDLE_TRAINERS=4 \ PADDLE_PSERVER_IPS=192.168.0.100,192.168.0.101,192.168.0.102,192.168.0.103 \ PADDLE_CURRENT_IP=192.168.0.100 \ PADDLE_PSERVER_PORT=7164 \ python dist_train.py \ - --model=ResNet50 \ + --model=DistResnet \ --batch_size=32 \ --update_method=pserver \ --device=CPU \ @@ -51,34 +51,33 @@ In this example, we launched 4 parameter server instances and 4 trainer instance 1. launch trainer process - ``` python + ``` bash PADDLE_TRAINING_ROLE=TRAINER \ PADDLE_TRAINERS=4 \ PADDLE_PSERVER_IPS=192.168.0.100,192.168.0.101,192.168.0.102,192.168.0.103 \ PADDLE_TRAINER_ID=0 \ PADDLE_PSERVER_PORT=7164 \ python dist_train.py \ - --model=ResNet50 \ + --model=DistResnet \ --batch_size=32 \ --update_method=pserver \ --device=GPU \ --data_dir=../data/ILSVRC2012 - ``` ### NCCL2 Collective Mode 1. launch trainer process - ``` python + ``` bash PADDLE_TRAINING_ROLE=TRAINER \ PADDLE_TRAINERS=4 \ PADDLE_TRAINER_IPS=192.168.0.100,192.168.0.101,192.168.0.102,192.168.0.103 \ PADDLE_TRAINER_ID=0 \ python dist_train.py \ - --model=ResNet50 \ + --model=DistResnet \ --batch_size=32 \ - --update_method=pserver \ + --update_method=nccl2 \ --device=GPU \ --data_dir=../data/ILSVRC2012 ``` @@ -101,13 +100,37 @@ Pass 0, batch 8, loss 7.264951, accucacys: [0.0, 0.00390625] Pass 0, batch 9, loss 7.43522, accucacys: [0.00390625, 0.00390625] ``` -The training accucacys top1 of local training, distributed training with NCCL2 and parameter server architecture on the ResNet50 model are shown in the below figure: +The below figure shows top 1 train accuracy for local training with 8 GPUs and distributed training +with 32 GPUs, and also distributed training with batch merge feature turned on. Note that the +red curve is trained with origin model configuration, which does not have the warmup and some detailed +modifications. + +For distributed training with 32GPUs using `--model DistResnet` we can achieve test accuracy 75.5% after +90 passes of training (the test accuracy is not shown in below figure). We can also achieve this result +using "batch merge" feature by setting `--multi_batch_repeat 4` and with higher throughput.


-Training acc1 curves +Training top-1 accuracy curves

+### Finetuning for Distributed Training + +The default resnet50 distributed training config is based on this paper: https://arxiv.org/pdf/1706.02677.pdf + +- use `--model DistResnet` +- we use 32 P40 GPUs with 4 Nodes, each has 8 GPUs +- we set `batch_size=32` for each GPU, in `batch_merge=on` case, we repeat 4 times before communicating with pserver. +- learning rate starts from 0.1 and warm up to 0.4 in 5 passes(because we already have gradient merging, + so we only need to linear scale up to trainer count) using 4 nodes. +- using batch_merge (`--multi_batch_repeat 4`) can make better use of GPU computing power and increase the + total training throughput. Because in the fine-tune configuration, we have to use `batch_size=32` per GPU, + and recent GPU is so fast that the communication between nodes may delay the total speed. In batch_merge mode + we run several batches forward and backward computation, then merge the gradients and send to pserver for + optimization, we use different batch norm mean and variance variable in each repeat so that adding repeats + behaves the same as adding more GPUs. + + ### Performance TBD diff --git a/fluid/PaddleCV/image_classification/dist_train/dist_train.py b/fluid/PaddleCV/image_classification/dist_train/dist_train.py index 160bfb95ac4cdb38083891b9e5f3e76d5371fc06..05c0c23212cfe49f6ef7332143f833d7d7fa7486 100644 --- a/fluid/PaddleCV/image_classification/dist_train/dist_train.py +++ b/fluid/PaddleCV/image_classification/dist_train/dist_train.py @@ -218,17 +218,58 @@ def dist_transpile(trainer_id, args, train_prog, startup_prog): 'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER' ) - -def test_parallel(exe, test_args, args, test_prog): +def append_bn_repeat_init_op(main_prog, startup_prog, num_repeats): + repeat_vars = set() + for op in main_prog.global_block().ops: + if op.type == "batch_norm": + repeat_vars.add(op.input("Mean")[0]) + repeat_vars.add(op.input("Variance")[0]) + + for i in range(num_repeats): + for op in startup_prog.global_block().ops: + if op.type == "fill_constant": + for oname in op.output_arg_names: + if oname in repeat_vars: + var = startup_prog.global_block().var(oname) + repeat_var_name = "%s.repeat.%d" % (oname, i) + repeat_var = startup_prog.global_block().create_var( + name=repeat_var_name, + type=var.type, + dtype=var.dtype, + shape=var.shape, + persistable=var.persistable + ) + main_prog.global_block()._clone_variable(repeat_var) + startup_prog.global_block().append_op( + type="fill_constant", + inputs={}, + outputs={"Out": repeat_var}, + attrs=op.all_attrs() + ) + + +def copyback_repeat_bn_params(main_prog): + repeat_vars = set() + for op in main_prog.global_block().ops: + if op.type == "batch_norm": + repeat_vars.add(op.input("Mean")[0]) + repeat_vars.add(op.input("Variance")[0]) + for vname in repeat_vars: + real_var = fluid.global_scope().find_var("%s.repeat.0" % vname).get_tensor() + orig_var = fluid.global_scope().find_var(vname).get_tensor() + orig_var.set(np.array(real_var), fluid.CUDAPlace(0)) # test on GPU0 + + +def test_single(exe, test_args, args, test_prog): acc_evaluators = [] - for i in six.moves.xrange(len(test_args[2])): + for i in xrange(len(test_args[2])): acc_evaluators.append(fluid.metrics.Accuracy()) to_fetch = [v.name for v in test_args[2]] test_args[4].start() while True: try: - acc_rets = exe.run(fetch_list=to_fetch) + acc_rets = exe.run(program=test_prog, fetch_list=to_fetch) for i, e in enumerate(acc_evaluators): e.update( value=np.array(acc_rets[i]), weight=args.batch_size) @@ -238,6 +279,7 @@ def test_parallel(exe, test_args, args, test_prog): return [e.eval() for e in acc_evaluators] + def train_parallel(train_args, test_args, args, train_prog, test_prog, startup_prog, nccl_id_var, num_trainers, trainer_id): over_all_start = time.time() @@ -248,11 +290,18 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, time.sleep(30) startup_exe = fluid.Executor(place) + if args.multi_batch_repeat > 1: + append_bn_repeat_init_op(train_prog, startup_prog, args.multi_batch_repeat) startup_exe.run(startup_prog) strategy = fluid.ExecutionStrategy() strategy.num_threads = args.cpus strategy.allow_op_delay = False build_strategy = fluid.BuildStrategy() + if args.multi_batch_repeat > 1: + pass_builder = build_strategy._create_passes_from_strategy() + mypass = pass_builder.insert_pass( + len(pass_builder.all_passes()) - 2, "multi_batch_merge_pass") + mypass.set_int("num_repeats", args.multi_batch_repeat) if args.reduce_strategy == "reduce": build_strategy.reduce_strategy = fluid.BuildStrategy( ).ReduceStrategy.Reduce @@ -278,15 +327,6 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, num_trainers=num_trainers, trainer_id=trainer_id) - if not args.no_test: - if args.update_method == "pserver": - test_scope = None - else: - test_scope = fluid.Scope() - test_exe = fluid.ParallelExecutor( - True, main_program=test_prog, share_vars_from=exe, - scope=test_scope) - pyreader = train_args[4] for pass_id in range(args.pass_num): num_samples = 0 @@ -297,7 +337,6 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, fetch_list = [avg_loss.name] acc_name_list = [v.name for v in train_args[2]] fetch_list.extend(acc_name_list) - try: if batch_id % 30 == 0: fetch_ret = exe.run(fetch_list) @@ -320,7 +359,9 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, pyreader.reset() if not args.no_test and test_args[2]: - test_ret = test_parallel(test_exe, test_args, args, test_prog) + if args.multi_batch_repeat > 1: + copyback_repeat_bn_params(train_prog) + test_ret = test_single(startup_exe, test_args, args, test_prog) print("Pass: %d, Test Accuracy: %s\n" % (pass_id, [np.mean(np.array(v)) for v in test_ret])) @@ -376,7 +417,7 @@ def main(): raise Exception( "Must configure correct environments to run dist train.") all_args.extend([train_prog, test_prog, startup_prog]) - if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER": + if os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER": all_args.extend([nccl_id_var, num_trainers, trainer_id]) train_parallel(*all_args) elif os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER": diff --git a/fluid/PaddleCV/image_classification/images/resnet50_32gpus-acc1.png b/fluid/PaddleCV/image_classification/images/resnet50_32gpus-acc1.png index 6d4c478743d0e5af0a9d727c76b433849c6a81dc..a4dda7babd8054b813596e138945b05e7df330c0 100644 Binary files a/fluid/PaddleCV/image_classification/images/resnet50_32gpus-acc1.png and b/fluid/PaddleCV/image_classification/images/resnet50_32gpus-acc1.png differ diff --git a/fluid/PaddleCV/object_detection/.gitignore b/fluid/PaddleCV/object_detection/.gitignore index a4552fd2acc864059f0cee0d88f96c0b5bd73aa0..404af33d9659de6c2c34a755475be5d0ad5948af 100644 --- a/fluid/PaddleCV/object_detection/.gitignore +++ b/fluid/PaddleCV/object_detection/.gitignore @@ -21,3 +21,4 @@ data/pascalvoc/trainval.txt log* *.log ssd_mobilenet_v1_pascalvoc* +quant_model diff --git a/fluid/PaddleCV/object_detection/README.md b/fluid/PaddleCV/object_detection/README.md index ec93f153e085401fd9d89b257b5ba45a700db08c..651016cdffa7fe6c4fa1dc5e886b9b18e8e40b04 100644 --- a/fluid/PaddleCV/object_detection/README.md +++ b/fluid/PaddleCV/object_detection/README.md @@ -1,7 +1,3 @@ -The minimum PaddlePaddle version needed for the code sample in this directory is the latest develop branch. If you are on a version of PaddlePaddle earlier than this, [please update your installation](http://www.paddlepaddle.org/docs/develop/documentation/en/build_and_install/pip_install_en.html). - ---- - ## SSD Object Detection ## Table of Contents diff --git a/fluid/PaddleCV/object_detection/README_cn.md b/fluid/PaddleCV/object_detection/README_cn.md index 6595c05460128223296f8fdd1cddbc482812616f..99603953a9dad956bcd13e7af68c59a9ae45c9cd 100644 --- a/fluid/PaddleCV/object_detection/README_cn.md +++ b/fluid/PaddleCV/object_detection/README_cn.md @@ -1,7 +1,3 @@ -运行本目录下的程序示例需要使用 PaddlePaddle 最新的 develop branch 版本。如果您的 PaddlePaddle 安装版本低于此要求,请按照[安装文档](http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_cn.html)中的说明更新 PaddlePaddle 安装版本。 - ---- - ## SSD 目标检测 ## Table of Contents diff --git a/fluid/PaddleCV/object_detection/README_quant.md b/fluid/PaddleCV/object_detection/README_quant.md new file mode 100644 index 0000000000000000000000000000000000000000..6723a48832d1b5210436eb2001234c6fe9149736 --- /dev/null +++ b/fluid/PaddleCV/object_detection/README_quant.md @@ -0,0 +1,143 @@ +## Quantization-aware training for SSD + +### Introduction + +The quantization-aware training used in this experiments is introduced in [fixed-point quantization desigin](https://gthub.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/quantization/fixed_point_quantization.md). Since quantization-aware training is still an active area of research and experimentation, +here, we just give an simple quantization training usage in Fluid based on MobileNet-SSD model, and more other exeperiments are still needed, like how to quantization traning by considering fusing batch normalization and convolution/fully-connected layers, channel-wise quantization of weights and so on. + + +A Python transpiler is used to rewrite Fluid training program or evaluation program for quantization-aware training: + +```python + + #startup_prog = fluid.Program() + #train_prog = fluid.Program() + #loss = build_program( + # main_prog=train_prog, + # startup_prog=startup_prog, + # is_train=True) + #build_program( + # main_prog=test_prog, + # startup_prog=startup_prog, + # is_train=False) + #test_prog = test_prog.clone(for_test=True) + # above is an pseudo code + + transpiler = fluid.contrib.QuantizeTranspiler( + weight_bits=8, + activation_bits=8, + activation_quantize_type='abs_max', # or 'range_abs_max' + weight_quantize_type='abs_max') + # note, transpiler.training_transpile will rewrite train_prog + # startup_prog is needed since it needs to insert and initialize + # some state variable + transpiler.training_transpile(train_prog, startup_prog) + transpiler.training_transpile(test_prog, startup_prog) +``` + + According to above design, this transpiler inserts fake quantization and de-quantization operation for each convolution operation (including depthwise convolution operation) and fully-connected operation. These quantizations take affect on weights and activations. + + In the design, we introduce dynamic quantization and static quantization strategies for different activation quantization methods. In the expriments, when set `activation_quantize_type` to `abs_max`, it is dynamic quantization. That is to say, the quantization scale (maximum of absolute value) of activation will be calculated each mini-batch during inference. When set `activation_quantize_type` to `range_abs_max`, a quantization scale for inference period will be calculated during training. Following part will introduce how to train. + +### Quantization-aware training + + The training is fine-tuned on the well-trained MobileNet-SSD model. So download model at first: + + ``` + wget http://paddlemodels.bj.bcebos.com/ssd_mobilenet_v1_pascalvoc.tar.gz + ``` + +- dynamic quantization: + + ```python + python main_quant.py \ + --data_dir=$PascalVOC_DIR$ \ + --mode='train' \ + --init_model=ssd_mobilenet_v1_pascalvoc \ + --act_quant_type='abs_max' \ + --epoc_num=20 \ + --learning_rate=0.0001 \ + --batch_size=64 \ + --model_save_dir=$OUTPUT_DIR$ + ``` + Since fine-tuned on a well-trained model, we use a small start learnng rate 0.0001, and train 20 epocs. + +- static quantization: + ```python + python main_quant.py \ + --data_dir=$PascalVOC_DIR$ \ + --mode='train' \ + --init_model=ssd_mobilenet_v1_pascalvoc \ + --act_quant_type='range_abs_max' \ + --epoc_num=80 \ + --learning_rate=0.001 \ + --lr_epochs=30,60 \ + --lr_decay_rates=1,0.1,0.01 \ + --batch_size=64 \ + --model_save_dir=$OUTPUT_DIR$ + ``` + Here, train 80 epocs, learning rate decays at 30 and 60 epocs by 0.1 every time. Users can adjust these hype-parameters. + +### Convert to inference model + + As described in the design documentation, the inference graph is a little different from training, the difference is the de-quantization operation is before or after conv/fc. This is equivalent in training due to linear operation of conv/fc and de-quantization and functions' commutative law. But for inference, it needs to convert the graph, `fluid.contrib.QuantizeTranspiler.freeze_program` is used to do this: + + ```python + #startup_prog = fluid.Program() + #test_prog = fluid.Program() + #test_py_reader, map_eval, nmsed_out, image = build_program( + # main_prog=test_prog, + # startup_prog=startup_prog, + # train_params=configs, + # is_train=False) + #test_prog = test_prog.clone(for_test=True) + #transpiler = fluid.contrib.QuantizeTranspiler(weight_bits=8, + # activation_bits=8, + # activation_quantize_type=act_quant_type, + # weight_quantize_type='abs_max') + #transpiler.training_transpile(test_prog, startup_prog) + #place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() + #exe = fluid.Executor(place) + #exe.run(startup_prog) + + def if_exist(var): + return os.path.exists(os.path.join(init_model, var.name)) + fluid.io.load_vars(exe, init_model, main_program=test_prog, + predicate=if_exist) + # freeze the rewrited training program + # freeze after load parameters, it will quantized weights + transpiler.freeze_program(test_prog, place) + ``` + + Users can evaluate the converted model by: + + ``` + python main_quant.py \ + --data_dir=$PascalVOC_DIR$ \ + --mode='test' \ + --init_model=$MODLE_DIR$ \ + --model_save_dir=$MobileNet_SSD_8BIT_MODEL$ + ``` + + You also can check the 8-bit model by the inference scripts + + ``` + python main_quant.py \ + --mode='infer' \ + --init_model=$MobileNet_SSD_8BIT_MODEL$ \ + --confs_threshold=0.5 \ + --image_path='/data/PascalVOC/VOCdevkit/VOC2007/JPEGImages/002271.jpg' + ``` + See 002271.jpg for the visualized image with bbouding boxes. + +### Results + +Results of MobileNet-v1-SSD 300x300 model on PascalVOC dataset. + +| Model | mAP | +|:---------------------------------------:|:------------------:| +|Floating point: 32bit | 73.32% | +|Fixed point: 8bit, dynamic quantization | 72.77% | +|Fixed point: 8bit, static quantization | 72.45% | + + As mentioned above, other experiments, like how to quantization traning by considering fusing batch normalization and convolution/fully-connected layers, channel-wise quantization of weights, quantizated weights type with uint8 instead of int8 and so on. diff --git a/fluid/PaddleCV/object_detection/eval.py b/fluid/PaddleCV/object_detection/eval.py index 1e8ec8860e537d0c7bd472099970d3b8c21ee78b..106fb67e073648f94934e7b17f02b964d276e5ec 100644 --- a/fluid/PaddleCV/object_detection/eval.py +++ b/fluid/PaddleCV/object_detection/eval.py @@ -77,12 +77,13 @@ def eval(args, data_args, test_list, batch_size, model_dir=None): place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) - # yapf: disable - if model_dir: - def if_exist(var): - return os.path.exists(os.path.join(model_dir, var.name)) - fluid.io.load_vars(exe, model_dir, main_program=test_prog, predicate=if_exist) - # yapf: enable + + def if_exist(var): + return os.path.exists(os.path.join(model_dir, var.name)) + + fluid.io.load_vars( + exe, model_dir, main_program=test_prog, predicate=if_exist) + test_reader = reader.test(data_args, test_list, batch_size=batch_size) test_py_reader.decorate_paddle_reader(test_reader) @@ -96,7 +97,7 @@ def eval(args, data_args, test_list, batch_size, model_dir=None): if batch_id % 10 == 0: print("Batch {0}, map {1}".format(batch_id, test_map)) batch_id += 1 - except fluid.core.EOFException: + except (fluid.core.EOFException, StopIteration): test_py_reader.reset() print("Test model {0}, map {1}".format(model_dir, test_map)) diff --git a/fluid/PaddleCV/object_detection/infer.py b/fluid/PaddleCV/object_detection/infer.py index 90a2906e2bbcdb8d24c76319003380a73a2f40cd..e81b5f31e763fbddb57657d16befbb04ed2e62bf 100644 --- a/fluid/PaddleCV/object_detection/infer.py +++ b/fluid/PaddleCV/object_detection/infer.py @@ -85,11 +85,11 @@ def draw_bounding_box_on_image(image_path, nms_out, confs_threshold, im_width, im_height = image.size for dt in nms_out: - category_id, score, xmin, ymin, xmax, ymax = dt.tolist() - if score < confs_threshold: + if dt[1] < confs_threshold: continue + category_id = dt[0] bbox = dt[2:] - xmin, ymin, xmax, ymax = bbox + xmin, ymin, xmax, ymax = clip_bbox(dt[2:]) (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line( @@ -104,6 +104,14 @@ def draw_bounding_box_on_image(image_path, nms_out, confs_threshold, image.save(image_name) +def clip_bbox(bbox): + xmin = max(min(bbox[0], 1.), 0.) + ymin = max(min(bbox[1], 1.), 0.) + xmax = max(min(bbox[2], 1.), 0.) + ymax = max(min(bbox[3], 1.), 0.) + return xmin, ymin, xmax, ymax + + if __name__ == '__main__': args = parser.parse_args() print_arguments(args) diff --git a/fluid/PaddleCV/object_detection/main_quant.py b/fluid/PaddleCV/object_detection/main_quant.py new file mode 100644 index 0000000000000000000000000000000000000000..0fde0a78b7c99fb2fe6c5facff75c3300ddc00ab --- /dev/null +++ b/fluid/PaddleCV/object_detection/main_quant.py @@ -0,0 +1,281 @@ +import os +import time +import numpy as np +import argparse +import functools +import shutil +import math + +import paddle +import paddle.fluid as fluid +import reader +from mobilenet_ssd import mobile_net +from utility import add_arguments, print_arguments +from train import build_program +from train import train_parameters +from infer import draw_bounding_box_on_image + +parser = argparse.ArgumentParser(description=__doc__) +add_arg = functools.partial(add_arguments, argparser=parser) +# yapf: disable +add_arg('learning_rate', float, 0.0001, "Learning rate.") +add_arg('batch_size', int, 64, "Minibatch size.") +add_arg('epoc_num', int, 20, "Epoch number.") +add_arg('use_gpu', bool, True, "Whether use GPU.") +add_arg('parallel', bool, True, "Whether train in parallel on multi-devices.") +add_arg('model_save_dir', str, 'quant_model', "The path to save model.") +add_arg('init_model', str, 'ssd_mobilenet_v1_pascalvoc', "The init model path.") +add_arg('ap_version', str, '11point', "mAP version can be integral or 11point.") +add_arg('image_shape', str, '3,300,300', "Input image shape.") +add_arg('mean_BGR', str, '127.5,127.5,127.5', "Mean value for B,G,R channel which will be subtracted.") +add_arg('lr_epochs', str, '30,60', "The learning decay steps.") +add_arg('lr_decay_rates', str, '1,0.1,0.01', "The learning decay rates for each step.") +add_arg('data_dir', str, 'data/pascalvoc', "Data directory") +add_arg('act_quant_type', str, 'abs_max', "Quantize type of activation, whicn can be abs_max or range_abs_max") +add_arg('image_path', str, '', "The image used to inference and visualize.") +add_arg('confs_threshold', float, 0.5, "Confidence threshold to draw bbox.") +add_arg('mode', str, 'train', "Job mode can be one of ['train', 'test', 'infer'].") +#yapf: enable + +def test(exe, test_prog, map_eval, test_py_reader): + _, accum_map = map_eval.get_map_var() + map_eval.reset(exe) + test_py_reader.start() + try: + batch = 0 + while True: + test_map, = exe.run(test_prog, fetch_list=[accum_map]) + if batch % 10 == 0: + print("Batch {0}, map {1}".format(batch, test_map)) + batch += 1 + except fluid.core.EOFException: + test_py_reader.reset() + finally: + test_py_reader.reset() + print("Test map {0}".format(test_map)) + return test_map + + +def save_model(exe, main_prog, model_save_dir, postfix): + model_path = os.path.join(model_save_dir, postfix) + if os.path.isdir(model_path): + shutil.rmtree(model_path) + fluid.io.save_persistables(exe, model_path, main_program=main_prog) + + +def train(args, + data_args, + train_params, + train_file_list, + val_file_list): + + model_save_dir = args.model_save_dir + init_model = args.init_model + epoc_num = args.epoc_num + use_gpu = args.use_gpu + parallel = args.parallel + is_shuffle = True + act_quant_type = args.act_quant_type + + if use_gpu: + devices_num = fluid.core.get_cuda_device_count() + else: + devices_num = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) + + batch_size = train_params['batch_size'] + batch_size_per_device = batch_size // devices_num + iters_per_epoc = train_params["train_images"] // batch_size + num_workers = 4 + + startup_prog = fluid.Program() + train_prog = fluid.Program() + test_prog = fluid.Program() + + train_py_reader, loss = build_program( + main_prog=train_prog, + startup_prog=startup_prog, + train_params=train_params, + is_train=True) + test_py_reader, map_eval, _, _ = build_program( + main_prog=test_prog, + startup_prog=startup_prog, + train_params=train_params, + is_train=False) + + test_prog = test_prog.clone(for_test=True) + + transpiler = fluid.contrib.QuantizeTranspiler(weight_bits=8, + activation_bits=8, + activation_quantize_type=act_quant_type, + weight_quantize_type='abs_max') + + transpiler.training_transpile(train_prog, startup_prog) + transpiler.training_transpile(test_prog, startup_prog) + + place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(startup_prog) + + if init_model: + print('Load init model %s.' % init_model) + def if_exist(var): + return os.path.exists(os.path.join(init_model, var.name)) + fluid.io.load_vars(exe, init_model, main_program=train_prog, + predicate=if_exist) + else: + print('There is no init model.') + + if parallel: + train_exe = fluid.ParallelExecutor(main_program=train_prog, + use_cuda=use_gpu, loss_name=loss.name) + + train_reader = reader.train(data_args, + train_file_list, + batch_size_per_device, + shuffle=is_shuffle, + use_multiprocessing=True, + num_workers=num_workers, + max_queue=24) + test_reader = reader.test(data_args, val_file_list, batch_size) + train_py_reader.decorate_paddle_reader(train_reader) + test_py_reader.decorate_paddle_reader(test_reader) + + train_py_reader.start() + best_map = 0. + try: + for epoc in range(epoc_num): + if epoc == 0: + # test quantized model without quantization-aware training. + test_map = test(exe, test_prog, map_eval, test_py_reader) + # train + for batch in range(iters_per_epoc): + start_time = time.time() + if parallel: + outs = train_exe.run(fetch_list=[loss.name]) + else: + outs = exe.run(train_prog, fetch_list=[loss]) + end_time = time.time() + avg_loss = np.mean(np.array(outs[0])) + if batch % 20 == 0: + print("Epoc {:d}, batch {:d}, loss {:.6f}, time {:.5f}".format( + epoc , batch, avg_loss, end_time - start_time)) + end_time = time.time() + test_map = test(exe, test_prog, map_eval, test_py_reader) + save_model(exe, train_prog, model_save_dir, str(epoc)) + if test_map > best_map: + best_map = test_map + save_model(exe, train_prog, model_save_dir, 'best_map') + print("Best test map {0}".format(best_map)) + except (fluid.core.EOFException, StopIteration): + train_py_reader.reset() + + +def eval(args, data_args, configs, val_file_list): + init_model = args.init_model + use_gpu = args.use_gpu + act_quant_type = args.act_quant_type + model_save_dir = args.model_save_dir + + batch_size = configs['batch_size'] + batch_size_per_device = batch_size + + startup_prog = fluid.Program() + test_prog = fluid.Program() + test_py_reader, map_eval, nmsed_out, image = build_program( + main_prog=test_prog, + startup_prog=startup_prog, + train_params=configs, + is_train=False) + test_prog = test_prog.clone(for_test=True) + + transpiler = fluid.contrib.QuantizeTranspiler(weight_bits=8, + activation_bits=8, + activation_quantize_type=act_quant_type, + weight_quantize_type='abs_max') + transpiler.training_transpile(test_prog, startup_prog) + + place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(startup_prog) + + def if_exist(var): + return os.path.exists(os.path.join(init_model, var.name)) + fluid.io.load_vars(exe, init_model, main_program=test_prog, + predicate=if_exist) + + # freeze after load parameters + transpiler.freeze_program(test_prog, place) + + test_reader = reader.test(data_args, val_file_list, batch_size) + test_py_reader.decorate_paddle_reader(test_reader) + + test_map = test(exe, test_prog, map_eval, test_py_reader) + print("Test model {0}, map {1}".format(init_model, test_map)) + fluid.io.save_inference_model(model_save_dir, [image.name], + [nmsed_out], exe, test_prog) + + +def infer(args, data_args): + model_dir = args.init_model + image_path = args.image_path + confs_threshold = args.confs_threshold + + place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() + exe = fluid.Executor(place) + [inference_program, feed , fetch] = fluid.io.load_inference_model( + dirname=model_dir, + executor=exe, + model_filename='__model__') + + #print(np.array(fluid.global_scope().find_var('conv2d_20.w_0').get_tensor())) + #print(np.max(np.array(fluid.global_scope().find_var('conv2d_20.w_0').get_tensor()))) + infer_reader = reader.infer(data_args, image_path) + data = infer_reader() + data = data.reshape((1,) + data.shape) + outs = exe.run(inference_program, + feed={feed[0]: data}, + fetch_list=fetch, + return_numpy=False) + out = np.array(outs[0]) + draw_bounding_box_on_image(image_path, out, confs_threshold, + data_args.label_list) + + +if __name__ == '__main__': + args = parser.parse_args() + print_arguments(args) + + # for pascalvoc + label_file = 'label_list' + train_list = 'trainval.txt' + val_list = 'test.txt' + dataset = 'pascalvoc' + + mean_BGR = [float(m) for m in args.mean_BGR.split(",")] + image_shape = [int(m) for m in args.image_shape.split(",")] + lr_epochs = [int(m) for m in args.lr_epochs.split(",")] + lr_rates = [float(m) for m in args.lr_decay_rates.split(",")] + train_parameters[dataset]['image_shape'] = image_shape + train_parameters[dataset]['batch_size'] = args.batch_size + train_parameters[dataset]['lr'] = args.learning_rate + train_parameters[dataset]['epoc_num'] = args.epoc_num + train_parameters[dataset]['ap_version'] = args.ap_version + train_parameters[dataset]['lr_epochs'] = lr_epochs + train_parameters[dataset]['lr_decay'] = lr_rates + + data_args = reader.Settings( + dataset=dataset, + data_dir=args.data_dir, + label_file=label_file, + resize_h=image_shape[1], + resize_w=image_shape[2], + mean_value=mean_BGR, + apply_distort=True, + apply_expand=True, + ap_version = args.ap_version) + if args.mode == 'train': + train(args, data_args, train_parameters[dataset], train_list, val_list) + elif args.mode == 'test': + eval(args, data_args, train_parameters[dataset], val_list) + else: + infer(args, data_args) diff --git a/fluid/PaddleCV/object_detection/train.py b/fluid/PaddleCV/object_detection/train.py index 7552c92124c0fac44f34b647f358d7e0acf3b643..2d830bcdf1d7900ca2f27055a9ec7568f75b6211 100644 --- a/fluid/PaddleCV/object_detection/train.py +++ b/fluid/PaddleCV/object_detection/train.py @@ -5,6 +5,7 @@ import argparse import functools import shutil import math +import multiprocessing import paddle import paddle.fluid as fluid @@ -16,18 +17,18 @@ parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('learning_rate', float, 0.001, "Learning rate.") -add_arg('batch_size', int, 64, "Minibatch size.") +add_arg('batch_size', int, 64, "Minibatch size of all devices.") add_arg('epoc_num', int, 120, "Epoch number.") add_arg('use_gpu', bool, True, "Whether use GPU.") -add_arg('parallel', bool, True, "Parallel.") -add_arg('dataset', str, 'pascalvoc', "coco2014, coco2017, and pascalvoc.") +add_arg('parallel', bool, True, "Whether train in parallel on multi-devices.") +add_arg('dataset', str, 'pascalvoc', "dataset can be coco2014, coco2017, and pascalvoc.") add_arg('model_save_dir', str, 'model', "The path to save model.") add_arg('pretrained_model', str, 'pretrained/ssd_mobilenet_v1_coco/', "The init model path.") -add_arg('ap_version', str, '11point', "Integral, 11point.") +add_arg('ap_version', str, '11point', "mAP version can be integral or 11point.") add_arg('image_shape', str, '3,300,300', "Input image shape.") -add_arg('mean_BGR', str, '127.5,127.5,127.5', "Mean value for B,G,R channel which will be subtracted.") -add_arg('data_dir', str, 'data/pascalvoc', "data directory") -add_arg('enable_ce', bool, False, "Whether use CE to evaluate the model") +add_arg('mean_BGR', str, '127.5,127.5,127.5', "Mean value for B,G,R channel which will be subtracted.") +add_arg('data_dir', str, 'data/pascalvoc', "Data directory.") +add_arg('enable_ce', bool, False, "Whether use CE to evaluate the model.") #yapf: enable train_parameters = { @@ -81,6 +82,7 @@ def build_program(main_prog, startup_prog, train_params, is_train): image_shape = train_params['image_shape'] class_num = train_params['class_num'] ap_version = train_params['ap_version'] + outs = [] with fluid.program_guard(main_prog, startup_prog): py_reader = fluid.layers.py_reader( capacity=64, @@ -98,11 +100,12 @@ def build_program(main_prog, startup_prog, train_params, is_train): loss = fluid.layers.reduce_sum(loss) optimizer = optimizer_setting(train_params) optimizer.minimize(loss) + outs = [py_reader, loss] else: with fluid.unique_name.guard("inference"): nmsed_out = fluid.layers.detection_output( locs, confs, box, box_var, nms_threshold=0.45) - loss = fluid.evaluator.DetectionMAP( + map_eval = fluid.evaluator.DetectionMAP( nmsed_out, gt_label, gt_box, @@ -111,7 +114,9 @@ def build_program(main_prog, startup_prog, train_params, is_train): overlap_threshold=0.5, evaluate_difficult=False, ap_version=ap_version) - return py_reader, loss + # nmsed_out and image is used to save mode for inference + outs = [py_reader, map_eval, nmsed_out, image] + return outs def train(args, @@ -127,8 +132,12 @@ def train(args, enable_ce = args.enable_ce is_shuffle = True - devices = os.getenv("CUDA_VISIBLE_DEVICES") or "" - devices_num = len(devices.split(",")) + if not use_gpu: + devices_num = int(os.environ.get('CPU_NUM', + multiprocessing.cpu_count())) + else: + devices_num = fluid.core.get_cuda_device_count() + batch_size = train_params['batch_size'] epoc_num = train_params['epoc_num'] batch_size_per_device = batch_size // devices_num @@ -153,7 +162,7 @@ def train(args, startup_prog=startup_prog, train_params=train_params, is_train=True) - test_py_reader, map_eval = build_program( + test_py_reader, map_eval, _, _ = build_program( main_prog=test_prog, startup_prog=startup_prog, train_params=train_params, @@ -258,11 +267,9 @@ def train(args, print("kpis train_speed_card%s %f" % (devices_num, total_time / epoch_idx)) - except fluid.core.EOFException: - train_py_reader.reset() - except StopIteration: + except (fluid.core.EOFException, StopIteration): + train_reader().close() train_py_reader.reset() - train_py_reader.reset() if __name__ == '__main__': @@ -291,6 +298,7 @@ if __name__ == '__main__': train_parameters[dataset]['batch_size'] = args.batch_size train_parameters[dataset]['lr'] = args.learning_rate train_parameters[dataset]['epoc_num'] = args.epoc_num + train_parameters[dataset]['ap_version'] = args.ap_version data_args = reader.Settings( dataset=args.dataset, diff --git a/fluid/PaddleNLP/language_model/.run_ce.sh b/fluid/PaddleNLP/language_model/gru/.run_ce.sh similarity index 100% rename from fluid/PaddleNLP/language_model/.run_ce.sh rename to fluid/PaddleNLP/language_model/gru/.run_ce.sh diff --git a/fluid/PaddleNLP/language_model/README.md b/fluid/PaddleNLP/language_model/gru/README.md similarity index 100% rename from fluid/PaddleNLP/language_model/README.md rename to fluid/PaddleNLP/language_model/gru/README.md diff --git a/fluid/PaddleNLP/language_model/_ce.py b/fluid/PaddleNLP/language_model/gru/_ce.py similarity index 100% rename from fluid/PaddleNLP/language_model/_ce.py rename to fluid/PaddleNLP/language_model/gru/_ce.py diff --git a/fluid/PaddleNLP/language_model/infer.py b/fluid/PaddleNLP/language_model/gru/infer.py similarity index 100% rename from fluid/PaddleNLP/language_model/infer.py rename to fluid/PaddleNLP/language_model/gru/infer.py diff --git a/fluid/PaddleNLP/language_model/train.py b/fluid/PaddleNLP/language_model/gru/train.py similarity index 92% rename from fluid/PaddleNLP/language_model/train.py rename to fluid/PaddleNLP/language_model/gru/train.py index 5b690dc584f8c9fc04a9ab9cf00d2dc8d02490be..a999d37e4142044b5ae9340d2db514cb1183c4e1 100644 --- a/fluid/PaddleNLP/language_model/train.py +++ b/fluid/PaddleNLP/language_model/gru/train.py @@ -22,10 +22,7 @@ def parse_args(): help='If set, run \ the task with continuous evaluation logs.') parser.add_argument( - '--num_devices', - type=int, - default=1, - help='Number of GPU devices') + '--num_devices', type=int, default=1, help='Number of GPU devices') args = parser.parse_args() return args @@ -129,15 +126,15 @@ def train(train_reader, newest_ppl = 0 for data in train_reader(): i += 1 - lod_src_wordseq = utils.to_lodtensor( - [dat[0] for dat in data], place) - lod_dst_wordseq = utils.to_lodtensor( - [dat[1] for dat in data], place) + lod_src_wordseq = utils.to_lodtensor([dat[0] for dat in data], + place) + lod_dst_wordseq = utils.to_lodtensor([dat[1] for dat in data], + place) ret_avg_cost = train_exe.run(feed={ "src_wordseq": lod_src_wordseq, "dst_wordseq": lod_dst_wordseq }, - fetch_list=fetch_list) + fetch_list=fetch_list) avg_ppl = np.exp(ret_avg_cost[0]) newest_ppl = np.mean(avg_ppl) if i % 100 == 0: @@ -145,8 +142,8 @@ def train(train_reader, t1 = time.time() total_time += t1 - t0 - print("epoch:%d num_steps:%d time_cost(s):%f" % (epoch_idx, i, - total_time / epoch_idx)) + print("epoch:%d num_steps:%d time_cost(s):%f" % + (epoch_idx, i, total_time / epoch_idx)) if pass_idx == pass_num - 1 and args.enable_ce: #Note: The following logs are special for CE monitoring. diff --git a/fluid/PaddleNLP/language_model/train_on_cloud.py b/fluid/PaddleNLP/language_model/gru/train_on_cloud.py similarity index 98% rename from fluid/PaddleNLP/language_model/train_on_cloud.py rename to fluid/PaddleNLP/language_model/gru/train_on_cloud.py index 41a0c60963681a811e7b16026ea46a9def7cbc99..9a912a1e4ffc552f699cd4d9d41999bb3422d369 100644 --- a/fluid/PaddleNLP/language_model/train_on_cloud.py +++ b/fluid/PaddleNLP/language_model/gru/train_on_cloud.py @@ -236,8 +236,8 @@ def do_train(train_reader, t1 = time.time() total_time += t1 - t0 - print("epoch:%d num_steps:%d time_cost(s):%f" % (epoch_idx, i, - total_time / epoch_idx)) + print("epoch:%d num_steps:%d time_cost(s):%f" % + (epoch_idx, i, total_time / epoch_idx)) save_dir = "%s/epoch_%d" % (model_dir, epoch_idx) feed_var_names = ["src_wordseq", "dst_wordseq"] diff --git a/fluid/PaddleNLP/language_model/utils.py b/fluid/PaddleNLP/language_model/gru/utils.py similarity index 100% rename from fluid/PaddleNLP/language_model/utils.py rename to fluid/PaddleNLP/language_model/gru/utils.py diff --git a/fluid/PaddleNLP/language_model/lstm/.run_ce.sh b/fluid/PaddleNLP/language_model/lstm/.run_ce.sh new file mode 100644 index 0000000000000000000000000000000000000000..8c192ad62e5b66bc4c7f3150d2e24507662491d8 --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/.run_ce.sh @@ -0,0 +1,11 @@ +export CUDA_VISIBLE_DEVICES=0 +cd data +sh download_data.sh +cd .. + +python train.py \ + --data_path data/simple-examples/data/ \ + --model_type small \ + --use_gpu True \ + --enable_ce | python _ce.py + diff --git a/fluid/PaddleNLP/language_model/lstm/README.md b/fluid/PaddleNLP/language_model/lstm/README.md new file mode 100644 index 0000000000000000000000000000000000000000..f6d1250ff66a066c8634eca9c3f74312f00a7749 --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/README.md @@ -0,0 +1,76 @@ +# lstm lm + +以下是本例的简要目录结构及说明: + +```text +. +├── README.md # 文档 +├── train.py # 训练脚本 +├── reader.py # 数据读取 +└── lm_model.py # 模型定义文件 +``` + + +## 简介 + +循环神经网络语言模型的介绍可以参阅论文[Recurrent Neural Network Regularization](https://arxiv.org/abs/1409.2329),本文主要是说明基于lstm的语言的模型的实现,数据是采用ptb dataset,下载地址为 +http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz + +## 数据下载 +用户可以自行下载数据,并解压, 也可以利用目录中的脚本 + +cd data; sh download_data.sh + +## 训练 + +运行命令 +`CUDA_VISIBLE_DEVICES=0 python train.py --data_path data/simple-examples/data/ --model_type small --use_gpu True` + 开始训练模型。 + +model_type 为模型配置的大小,目前支持 small,medium, large 三种配置形式 + +实现采用双层的lstm,具体的参数和网络配置 可以参考 train.py, lm_model.py 文件中的设置 + + +## 训练结果示例 + +p40中训练日志如下(small config), test 测试集仅在最后一个epoch完成后进行测试 +```text +epoch id 0 +ppl 232 865.86505 1.0 +ppl 464 632.76526 1.0 +ppl 696 510.47153 1.0 +ppl 928 437.60617 1.0 +ppl 1160 393.38422 1.0 +ppl 1392 353.05365 1.0 +ppl 1624 325.73267 1.0 +ppl 1856 305.488 1.0 +ppl 2088 286.3128 1.0 +ppl 2320 270.91504 1.0 +train ppl 270.86246 +valid ppl 181.867964379 +... +ppl 2320 40.975872 0.001953125 +train ppl 40.974102 +valid ppl 117.85741214 +test ppl 113.939103843 +``` +## 与tf结果对比 + +tf采用的版本是1.6 +```text +small config + train valid test +fluid 1.0 40.962 118.111 112.617 +tf 1.6 40.492 118.329 113.788 + +medium config + train valid test +fluid 1.0 45.620 87.398 83.682 +tf 1.6 45.594 87.363 84.015 + +large config + train valid test +fluid 1.0 37.221 82.358 78.137 +tf 1.6 38.342 82.311 78.121 +``` diff --git a/fluid/PaddleNLP/language_model/lstm/_ce.py b/fluid/PaddleNLP/language_model/lstm/_ce.py new file mode 100644 index 0000000000000000000000000000000000000000..f537f6aa62dd502c79174fadedda0da621c8eb7b --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/_ce.py @@ -0,0 +1,56 @@ +# this file is only used for continuous evaluation test! + +import os +import sys +sys.path.append(os.environ['ceroot']) +from kpi import CostKpi +from kpi import DurationKpi + +imikolov_20_avg_ppl_kpi = CostKpi('lstm_language_model_loss', 0.02, 0) +imikolov_20_pass_duration_kpi = DurationKpi( + 'lstm_language_model_duration', 0.02, 0, actived=True) + +tracking_kpis = [ + imikolov_20_avg_ppl_kpi, + imikolov_20_pass_duration_kpi, +] + + +def parse_log(log): + ''' + This method should be implemented by model developers. + + The suggestion: + + each line in the log should be key, value, for example: + + " + train_cost\t1.0 + test_cost\t1.0 + train_cost\t1.0 + train_cost\t1.0 + train_acc\t1.2 + " + ''' + for line in log.split('\n'): + fs = line.strip().split('\t') + print(fs) + kpi_name = fs[0] + kpi_value = float(fs[1]) + yield kpi_name, kpi_value + + +def log_to_ce(log): + kpi_tracker = {} + for kpi in tracking_kpis: + kpi_tracker[kpi.name] = kpi + + for (kpi_name, kpi_value) in parse_log(log): + print(kpi_name, kpi_value) + kpi_tracker[kpi_name].add_record(kpi_value) + kpi_tracker[kpi_name].persist() + + +if __name__ == '__main__': + log = sys.stdin.read() + log_to_ce(log) diff --git a/fluid/PaddleNLP/language_model/lstm/args.py b/fluid/PaddleNLP/language_model/lstm/args.py new file mode 100644 index 0000000000000000000000000000000000000000..498fd9437885238c09e721ee6b182c6d6764398b --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/args.py @@ -0,0 +1,40 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import distutils.util + + +def parse_args(): + parser = argparse.ArgumentParser(description=__doc__) + parser.add_argument( + "--model_type", + type=str, + default="small", + help="model_type [test|small|med|big]") + parser.add_argument( + "--data_path", type=str, help="all the data for train,valid,test") + parser.add_argument('--para_init', action='store_true') + parser.add_argument( + '--use_gpu', type=bool, default=False, help='whether using gpu') + parser.add_argument( + '--log_path', + help='path of the log file. If not set, logs are printed to console') + parser.add_argument('--enable_ce', action='store_true') + args = parser.parse_args() + return args diff --git a/fluid/PaddleNLP/language_model/lstm/data/download_data.sh b/fluid/PaddleNLP/language_model/lstm/data/download_data.sh new file mode 100644 index 0000000000000000000000000000000000000000..29966c7663a60ad802e273727496acb6381c98ca --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/data/download_data.sh @@ -0,0 +1,4 @@ + +wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz + +tar -xzvf simple-examples.tgz diff --git a/fluid/PaddleNLP/language_model/lstm/lm_model.py b/fluid/PaddleNLP/language_model/lstm/lm_model.py new file mode 100644 index 0000000000000000000000000000000000000000..b52b18f9b95ea4654ca35419fb8b4b577e586577 --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/lm_model.py @@ -0,0 +1,285 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle.fluid.layers as layers +import paddle.fluid as fluid +from paddle.fluid.layers.control_flow import StaticRNN as PaddingRNN +import numpy as np + + +def lm_model(hidden_size, + vocab_size, + batch_size, + num_layers=2, + num_steps=20, + init_scale=0.1, + dropout=None): + def padding_rnn(input_embedding, len=3, init_hidden=None, init_cell=None): + weight_1_arr = [] + weight_2_arr = [] + bias_arr = [] + hidden_array = [] + cell_array = [] + mask_array = [] + for i in range(num_layers): + weight_1 = layers.create_parameter([hidden_size * 2, hidden_size*4], dtype="float32", name="fc_weight1_"+str(i), \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + weight_1_arr.append(weight_1) + bias_1 = layers.create_parameter( + [hidden_size * 4], + dtype="float32", + name="fc_bias1_" + str(i), + default_initializer=fluid.initializer.Constant(0.0)) + bias_arr.append(bias_1) + + pre_hidden = layers.slice( + init_hidden, axes=[0], starts=[i], ends=[i + 1]) + pre_cell = layers.slice( + init_cell, axes=[0], starts=[i], ends=[i + 1]) + pre_hidden = layers.reshape(pre_hidden, shape=[-1, hidden_size]) + pre_cell = layers.reshape(pre_cell, shape=[-1, hidden_size]) + hidden_array.append(pre_hidden) + cell_array.append(pre_cell) + + input_embedding = layers.transpose(input_embedding, perm=[1, 0, 2]) + rnn = PaddingRNN() + + with rnn.step(): + input = rnn.step_input(input_embedding) + for k in range(num_layers): + pre_hidden = rnn.memory(init=hidden_array[k]) + pre_cell = rnn.memory(init=cell_array[k]) + weight_1 = weight_1_arr[k] + bias = bias_arr[k] + + nn = layers.concat([input, pre_hidden], 1) + gate_input = layers.matmul(x=nn, y=weight_1) + + gate_input = layers.elementwise_add(gate_input, bias) + #i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + i = layers.slice( + gate_input, axes=[1], starts=[0], ends=[hidden_size]) + j = layers.slice( + gate_input, + axes=[1], + starts=[hidden_size], + ends=[hidden_size * 2]) + f = layers.slice( + gate_input, + axes=[1], + starts=[hidden_size * 2], + ends=[hidden_size * 3]) + o = layers.slice( + gate_input, + axes=[1], + starts=[hidden_size * 3], + ends=[hidden_size * 4]) + + c = pre_cell * layers.sigmoid(f) + layers.sigmoid( + i) * layers.tanh(j) + m = layers.tanh(c) * layers.sigmoid(o) + + rnn.update_memory(pre_hidden, m) + rnn.update_memory(pre_cell, c) + + rnn.step_output(m) + rnn.step_output(c) + + input = m + + if dropout != None and dropout > 0.0: + input = layers.dropout( + input, + dropout_prob=dropout, + dropout_implementation='upscale_in_train') + + rnn.step_output(input) + #real_res = layers.concat(res, 0) + rnnout = rnn() + + last_hidden_array = [] + last_cell_array = [] + real_res = rnnout[-1] + for i in range(num_layers): + m = rnnout[i * 2] + c = rnnout[i * 2 + 1] + m.stop_gradient = True + c.stop_gradient = True + last_h = layers.slice( + m, axes=[0], starts=[num_steps - 1], ends=[num_steps]) + last_hidden_array.append(last_h) + last_c = layers.slice( + c, axes=[0], starts=[num_steps - 1], ends=[num_steps]) + last_cell_array.append(last_c) + ''' + else: + real_res = rnnout[-1] + for i in range( num_layers ): + + m1, c1, m2, c2 = rnnout + real_res = m2 + m1.stop_gradient = True + c1.stop_gradient = True + c2.stop_gradient = True + ''' + + #layers.Print( first_hidden, message="22", summarize=10) + #layers.Print( rnnout[1], message="11", summarize=10) + #real_res = ( rnnout[1] + rnnout[2] + rnnout[3] + rnnout[4]) / 4.0 + real_res = layers.transpose(x=real_res, perm=[1, 0, 2]) + last_hidden = layers.concat(last_hidden_array, 0) + last_cell = layers.concat(last_cell_array, 0) + ''' + last_hidden = layers.concat( hidden_array, 1 ) + last_hidden = layers.reshape( last_hidden, shape=[-1, num_layers, hidden_size]) + last_hidden = layers.transpose( x = last_hidden, perm = [1, 0, 2]) + last_cell = layers.concat( cell_array, 1) + last_cell = layers.reshape( last_cell, shape=[ -1, num_layers, hidden_size]) + last_cell = layers.transpose( x = last_cell, perm = [1, 0, 2]) + ''' + + return real_res, last_hidden, last_cell + + def encoder_static(input_embedding, len=3, init_hidden=None, + init_cell=None): + + weight_1_arr = [] + weight_2_arr = [] + bias_arr = [] + hidden_array = [] + cell_array = [] + mask_array = [] + for i in range(num_layers): + weight_1 = layers.create_parameter([hidden_size * 2, hidden_size*4], dtype="float32", name="fc_weight1_"+str(i), \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + weight_1_arr.append(weight_1) + bias_1 = layers.create_parameter( + [hidden_size * 4], + dtype="float32", + name="fc_bias1_" + str(i), + default_initializer=fluid.initializer.Constant(0.0)) + bias_arr.append(bias_1) + + pre_hidden = layers.slice( + init_hidden, axes=[0], starts=[i], ends=[i + 1]) + pre_cell = layers.slice( + init_cell, axes=[0], starts=[i], ends=[i + 1]) + pre_hidden = layers.reshape(pre_hidden, shape=[-1, hidden_size]) + pre_cell = layers.reshape(pre_cell, shape=[-1, hidden_size]) + hidden_array.append(pre_hidden) + cell_array.append(pre_cell) + + res = [] + for index in range(len): + input = layers.slice( + input_embedding, axes=[1], starts=[index], ends=[index + 1]) + input = layers.reshape(input, shape=[-1, hidden_size]) + for k in range(num_layers): + pre_hidden = hidden_array[k] + pre_cell = cell_array[k] + weight_1 = weight_1_arr[k] + bias = bias_arr[k] + + nn = layers.concat([input, pre_hidden], 1) + gate_input = layers.matmul(x=nn, y=weight_1) + + gate_input = layers.elementwise_add(gate_input, bias) + i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + + c = pre_cell * layers.sigmoid(f) + layers.sigmoid( + i) * layers.tanh(j) + m = layers.tanh(c) * layers.sigmoid(o) + + hidden_array[k] = m + cell_array[k] = c + input = m + + if dropout != None and dropout > 0.0: + input = layers.dropout( + input, + dropout_prob=dropout, + dropout_implementation='upscale_in_train') + + res.append(layers.reshape(input, shape=[1, -1, hidden_size])) + real_res = layers.concat(res, 0) + real_res = layers.transpose(x=real_res, perm=[1, 0, 2]) + last_hidden = layers.concat(hidden_array, 1) + last_hidden = layers.reshape( + last_hidden, shape=[-1, num_layers, hidden_size]) + last_hidden = layers.transpose(x=last_hidden, perm=[1, 0, 2]) + last_cell = layers.concat(cell_array, 1) + last_cell = layers.reshape( + last_cell, shape=[-1, num_layers, hidden_size]) + last_cell = layers.transpose(x=last_cell, perm=[1, 0, 2]) + + return real_res, last_hidden, last_cell + + x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64') + y = layers.data(name="y", shape=[-1, 1], dtype='float32') + + init_hidden = layers.data(name="init_hidden", shape=[1], dtype='float32') + init_cell = layers.data(name="init_cell", shape=[1], dtype='float32') + + init_hidden = layers.reshape( + init_hidden, shape=[num_layers, -1, hidden_size]) + init_cell = layers.reshape(init_cell, shape=[num_layers, -1, hidden_size]) + + x_emb = layers.embedding( + input=x, + size=[vocab_size, hidden_size], + dtype='float32', + is_sparse=True, + param_attr=fluid.ParamAttr( + name='embedding_para', + initializer=fluid.initializer.UniformInitializer( + low=-init_scale, high=init_scale))) + + x_emb = layers.reshape(x_emb, shape=[-1, num_steps, hidden_size]) + if dropout != None and dropout > 0.0: + x_emb = layers.dropout( + x_emb, + dropout_prob=dropout, + dropout_implementation='upscale_in_train') + + rnn_out, last_hidden, last_cell = padding_rnn( + x_emb, len=num_steps, init_hidden=init_hidden, init_cell=init_cell) + rnn_out = layers.reshape(rnn_out, shape=[-1, num_steps, hidden_size]) + + + softmax_weight = layers.create_parameter([hidden_size, vocab_size], dtype="float32", name="softmax_weight", \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + softmax_bias = layers.create_parameter([vocab_size], dtype="float32", name='softmax_bias', \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + + projection = layers.matmul(rnn_out, softmax_weight) + projection = layers.elementwise_add(projection, softmax_bias) + + projection = layers.reshape(projection, shape=[-1, vocab_size]) + #y = layers.reshape( y, shape=[-1, vocab_size]) + + loss = layers.softmax_with_cross_entropy( + logits=projection, label=y, soft_label=False) + + loss = layers.reshape(loss, shape=[-1, num_steps]) + loss = layers.reduce_mean(loss, dim=[0]) + loss = layers.reduce_sum(loss) + + loss.permissions = True + + feeding_list = ['x', 'y', 'init_hidden', 'init_cell'] + return loss, last_hidden, last_cell, feeding_list diff --git a/fluid/PaddleNLP/language_model/lstm/reader.py b/fluid/PaddleNLP/language_model/lstm/reader.py new file mode 100644 index 0000000000000000000000000000000000000000..50e8835ec8b96bf37a7b972700a588034d41425c --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/reader.py @@ -0,0 +1,105 @@ +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Utilities for parsing PTB text files.""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import collections +import os +import sys +import numpy as np + +Py3 = sys.version_info[0] == 3 + + +def _read_words(filename): + data = [] + with open(filename, "r") as f: + return f.read().decode("utf-8").replace("\n", "").split() + + +def _build_vocab(filename): + data = _read_words(filename) + + counter = collections.Counter(data) + count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) + + words, _ = list(zip(*count_pairs)) + + print("vocab word num", len(words)) + word_to_id = dict(zip(words, range(len(words)))) + + return word_to_id + + +def _file_to_word_ids(filename, word_to_id): + data = _read_words(filename) + return [word_to_id[word] for word in data if word in word_to_id] + + +def ptb_raw_data(data_path=None): + """Load PTB raw data from data directory "data_path". + + Reads PTB text files, converts strings to integer ids, + and performs mini-batching of the inputs. + + The PTB dataset comes from Tomas Mikolov's webpage: + + http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz + + Args: + data_path: string path to the directory where simple-examples.tgz has + been extracted. + + Returns: + tuple (train_data, valid_data, test_data, vocabulary) + where each of the data objects can be passed to PTBIterator. + """ + + train_path = os.path.join(data_path, "ptb.train.txt") + #train_path = os.path.join(data_path, "train.fake") + valid_path = os.path.join(data_path, "ptb.valid.txt") + test_path = os.path.join(data_path, "ptb.test.txt") + + word_to_id = _build_vocab(train_path) + train_data = _file_to_word_ids(train_path, word_to_id) + valid_data = _file_to_word_ids(valid_path, word_to_id) + test_data = _file_to_word_ids(test_path, word_to_id) + vocabulary = len(word_to_id) + return train_data, valid_data, test_data, vocabulary + + +def get_data_iter(raw_data, batch_size, num_steps): + data_len = len(raw_data) + raw_data = np.asarray(raw_data, dtype="int64") + + #print( "raw", raw_data[:20] ) + + batch_len = data_len // batch_size + + data = raw_data[0:batch_size * batch_len].reshape((batch_size, batch_len)) + + #h = data.reshape( (-1)) + #print( "h", h[:20]) + + epoch_size = (batch_len - 1) // num_steps + for i in range(epoch_size): + start = i * num_steps + #print( i * num_steps ) + x = np.copy(data[:, i * num_steps:(i + 1) * num_steps]) + y = np.copy(data[:, i * num_steps + 1:(i + 1) * num_steps + 1]) + + yield (x, y) diff --git a/fluid/PaddleNLP/language_model/lstm/train.py b/fluid/PaddleNLP/language_model/lstm/train.py new file mode 100644 index 0000000000000000000000000000000000000000..fc058c6a0e80f4aeba76656fe505207846d66e2f --- /dev/null +++ b/fluid/PaddleNLP/language_model/lstm/train.py @@ -0,0 +1,300 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import time +import os +import random + +import math + +import paddle +import paddle.fluid as fluid +import paddle.fluid.core as core +import paddle.fluid.framework as framework +from paddle.fluid.executor import Executor + +import reader + +import sys +if sys.version[0] == '2': + reload(sys) + sys.setdefaultencoding("utf-8") +sys.path.append('..') +import os +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" + +from args import * +import lm_model +import logging +import pickle + +SEED = 123 + + +def get_current_model_para(train_prog, train_exe): + param_list = train_prog.block(0).all_parameters() + param_name_list = [p.name for p in param_list] + + vals = {} + for p_name in param_name_list: + p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) + vals[p_name] = p_array + + return vals + + +def save_para_npz(train_prog, train_exe): + print("begin to save model to model_base") + param_list = train_prog.block(0).all_parameters() + param_name_list = [p.name for p in param_list] + + vals = {} + for p_name in param_name_list: + p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) + vals[p_name] = p_array + + emb = vals["embedding_para"] + print("begin to save model to model_base") + np.savez("mode_base", **vals) + + +def train(): + args = parse_args() + model_type = args.model_type + logger = logging.getLogger("lm") + logger.setLevel(logging.INFO) + formatter = logging.Formatter( + '%(asctime)s - %(name)s - %(levelname)s - %(message)s') + if args.enable_ce: + fluid.default_startup_program().random_seed = SEED + if args.log_path: + file_handler = logging.FileHandler(args.log_path) + file_handler.setLevel(logging.INFO) + file_handler.setFormatter(formatter) + logger.addHandler(file_handler) + else: + console_handler = logging.StreamHandler() + console_handler.setLevel(logging.INFO) + console_handler.setFormatter(formatter) + logger.addHandler(console_handler) + + logger.info('Running with args : {}'.format(args)) + + vocab_size = 10000 + if model_type == "test": + num_layers = 1 + batch_size = 2 + hidden_size = 10 + num_steps = 3 + init_scale = 0.1 + max_grad_norm = 5.0 + epoch_start_decay = 1 + max_epoch = 1 + dropout = 0.0 + lr_decay = 0.5 + base_learning_rate = 1.0 + elif model_type == "small": + num_layers = 2 + batch_size = 20 + hidden_size = 200 + num_steps = 20 + init_scale = 0.1 + max_grad_norm = 5.0 + epoch_start_decay = 4 + max_epoch = 13 + dropout = 0.0 + lr_decay = 0.5 + base_learning_rate = 1.0 + elif model_type == "medium": + num_layers = 2 + batch_size = 20 + hidden_size = 650 + num_steps = 35 + init_scale = 0.05 + max_grad_norm = 5.0 + epoch_start_decay = 6 + max_epoch = 39 + dropout = 0.5 + lr_decay = 0.8 + base_learning_rate = 1.0 + elif model_type == "large": + num_layers = 2 + batch_size = 20 + hidden_size = 1500 + num_steps = 35 + init_scale = 0.04 + max_grad_norm = 10.0 + epoch_start_decay = 14 + max_epoch = 55 + dropout = 0.65 + lr_decay = 1.0 / 1.15 + base_learning_rate = 1.0 + else: + print("model type not support") + return + + # Training process + loss, last_hidden, last_cell, feed_order = lm_model.lm_model( + hidden_size, + vocab_size, + batch_size, + num_layers=num_layers, + num_steps=num_steps, + init_scale=init_scale, + dropout=dropout) + # clone from default main program and use it as the validation program + main_program = fluid.default_main_program() + inference_program = fluid.default_main_program().clone(for_test=True) + + fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm( + clip_norm=max_grad_norm)) + + learning_rate = fluid.layers.create_global_var( + name="learning_rate", + shape=[1], + value=1.0, + dtype='float32', + persistable=True) + + optimizer = fluid.optimizer.SGD(learning_rate=learning_rate) + + optimizer.minimize(loss) + + place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() + exe = Executor(place) + exe.run(framework.default_startup_program()) + + data_path = args.data_path + print("begin to load data") + raw_data = reader.ptb_raw_data(data_path) + print("finished load data") + train_data, valid_data, test_data, _ = raw_data + + def prepare_input(batch, init_hidden, init_cell, epoch_id=0, with_lr=True): + x, y = batch + new_lr = base_learning_rate * (lr_decay**max( + epoch_id + 1 - epoch_start_decay, 0.0)) + lr = np.ones((1), dtype='float32') * new_lr + res = {} + x = x.reshape((-1, num_steps, 1)) + y = y.reshape((-1, 1)) + + res['x'] = x + res['y'] = y + res['init_hidden'] = init_hidden + res['init_cell'] = init_cell + if with_lr: + res['learning_rate'] = lr + + return res + + def eval(data): + # when eval the batch_size set to 1 + eval_data_iter = reader.get_data_iter(data, 1, num_steps) + total_loss = 0.0 + iters = 0 + init_hidden = np.zeros((num_layers, 1, hidden_size), dtype='float32') + init_cell = np.zeros((num_layers, 1, hidden_size), dtype='float32') + for batch_id, batch in enumerate(eval_data_iter): + input_data_feed = prepare_input( + batch, init_hidden, init_cell, epoch_id, with_lr=False) + fetch_outs = exe.run( + inference_program, + feed=input_data_feed, + fetch_list=[loss.name, last_hidden.name, last_cell.name]) + + cost_train = np.array(fetch_outs[0]) + init_hidden = np.array(fetch_outs[1]) + init_cell = np.array(fetch_outs[2]) + + total_loss += cost_train + iters += num_steps + + ppl = np.exp(total_loss / iters) + return ppl + + # get train epoch size + batch_len = len(train_data) // batch_size + epoch_size = (batch_len - 1) // num_steps + log_interval = epoch_size // 10 + total_time = 0.0 + for epoch_id in range(max_epoch): + start_time = time.time() + print("epoch id", epoch_id) + train_data_iter = reader.get_data_iter(train_data, batch_size, + num_steps) + + total_loss = 0 + + init_hidden = None + init_cell = None + #debug_para(fluid.framework.default_main_program(), parallel_executor) + total_loss = 0 + iters = 0 + init_hidden = np.zeros( + (num_layers, batch_size, hidden_size), dtype='float32') + init_cell = np.zeros( + (num_layers, batch_size, hidden_size), dtype='float32') + for batch_id, batch in enumerate(train_data_iter): + input_data_feed = prepare_input( + batch, init_hidden, init_cell, epoch_id=epoch_id) + fetch_outs = exe.run(feed=input_data_feed, + fetch_list=[ + loss.name, last_hidden.name, + last_cell.name, 'learning_rate' + ]) + + cost_train = np.array(fetch_outs[0]) + init_hidden = np.array(fetch_outs[1]) + init_cell = np.array(fetch_outs[2]) + + lr = np.array(fetch_outs[3]) + + total_loss += cost_train + iters += num_steps + if batch_id > 0 and batch_id % log_interval == 0: + ppl = np.exp(total_loss / iters) + print("ppl ", batch_id, ppl[0], lr[0]) + + ppl = np.exp(total_loss / iters) + if epoch_id == 0 and ppl[0] > 1000: + # for bad init, after first epoch, the loss is over 1000 + # no more need to continue + return + end_time = time.time() + total_time += end_time - start_time + print("train ppl", ppl[0]) + + if epoch_id == max_epoch - 1 and args.enable_ce: + print("lstm_language_model_duration\t%s" % (total_time / max_epoch)) + print("lstm_language_model_loss\t%s" % ppl[0]) + + model_path = os.path.join("model_new/", str(epoch_id)) + if not os.path.isdir(model_path): + os.makedirs(model_path) + fluid.io.save_persistables( + executor=exe, dirname=model_path, main_program=main_program) + valid_ppl = eval(valid_data) + print("valid ppl", valid_ppl[0]) + test_ppl = eval(test_data) + print("test ppl", test_ppl[0]) + + +if __name__ == '__main__': + train() diff --git a/fluid/PaddleRec/tagspace/README.md b/fluid/PaddleRec/tagspace/README.md index 958b883c83c178daac5ea8e9bc0992b24e9a447c..29509d3f4aee846ebc331b456024b3a90c1a77f0 100644 --- a/fluid/PaddleRec/tagspace/README.md +++ b/fluid/PaddleRec/tagspace/README.md @@ -27,7 +27,6 @@ TagSpace模型的介绍可以参阅论文[#TagSpace: Semantic Embeddings from Ha "3","Wall St. Bears Claw Back Into the Black (Reuters)","Reuters - Short-sellers, Wall Street's dwindling\band of ultra-cynics, are seeing green again." ``` - ## 训练 '--use_cuda 1' 表示使用gpu, 缺省表示使用cpu diff --git a/fluid/language_model/gru/.run_ce.sh b/fluid/language_model/gru/.run_ce.sh new file mode 100644 index 0000000000000000000000000000000000000000..5ee2d8aa0582b2b8504f9ba645b6252aa75f23bf --- /dev/null +++ b/fluid/language_model/gru/.run_ce.sh @@ -0,0 +1,14 @@ +#!/bin/bash + +export MKL_NUM_THREADS=1 +export OMP_NUM_THREADS=1 + +cudaid=${language_model:=0} # use 0-th card as default +export CUDA_VISIBLE_DEVICES=$cudaid + +FLAGS_benchmark=true python train.py --enable_ce | python _ce.py + +cudaid=${language_model_m:=0,1,2,3} # use 0,1,2,3 card as default +export CUDA_VISIBLE_DEVICES=$cudaid + +FLAGS_benchmark=true python train.py --enable_ce | python _ce.py diff --git a/fluid/language_model/gru/README.md b/fluid/language_model/gru/README.md new file mode 100644 index 0000000000000000000000000000000000000000..91ce2d7f58085b56da2ac2dec03af2a05985ab8f --- /dev/null +++ b/fluid/language_model/gru/README.md @@ -0,0 +1,148 @@ +# 语言模型 + +以下是本例的简要目录结构及说明: + +```text +. +├── README.md # 文档 +├── train.py # 训练脚本 +├── infer.py # 预测脚本 +└── utils.py # 通用函数 +``` + + +## 简介 + +循环神经网络语言模型的介绍可以参阅论文[Recurrent Neural Network Regularization](https://arxiv.org/abs/1409.2329),在本例中,我们实现了GRU-RNN语言模型。 + +## 训练 + +运行命令 `python train.py` 开始训练模型。 +```python +python train.py +``` + +当前支持的参数可参见[train.py](./train.py) `train_net` 函数 +```python +vocab, train_reader, test_reader = utils.prepare_data( + batch_size=20, # batch size + buffer_size=1000, # buffer size, default value is OK + word_freq_threshold=0) # vocabulary related parameter, and words with frequency below this value will be filtered + +train(train_reader=train_reader, + vocab=vocab, + network=network, + hid_size=200, # embedding and hidden size + base_lr=1.0, # base learning rate + batch_size=20, # batch size, the same as that in prepare_data + pass_num=12, # the number of passes for training + use_cuda=True, # whether to use GPU card + parallel=False, # whether to be parallel + model_dir="model", # directory to save model + init_low_bound=-0.1, # uniform parameter initialization lower bound + init_high_bound=0.1) # uniform parameter initialization upper bound +``` + +## 自定义网络结构 + +可在[train.py](./train.py) `network` 函数中调整网络结构,当前的网络结构如下: +```python +emb = fluid.layers.embedding(input=src, size=[vocab_size, hid_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform(low=init_low_bound, high=init_high_bound), + learning_rate=emb_lr_x), + is_sparse=True) + +fc0 = fluid.layers.fc(input=emb, size=hid_size * 3, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform(low=init_low_bound, high=init_high_bound), + learning_rate=gru_lr_x)) +gru_h0 = fluid.layers.dynamic_gru(input=fc0, size=hid_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform(low=init_low_bound, high=init_high_bound), + learning_rate=gru_lr_x)) + +fc = fluid.layers.fc(input=gru_h0, size=vocab_size, act='softmax', + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform(low=init_low_bound, high=init_high_bound), + learning_rate=fc_lr_x)) + +cost = fluid.layers.cross_entropy(input=fc, label=dst) +``` + +## 训练结果示例 + +我们在Tesla K40m单GPU卡上训练的日志如下所示 +```text +epoch_1 start +step:100 ppl:771.053 +step:200 ppl:449.597 +step:300 ppl:642.654 +step:400 ppl:458.128 +step:500 ppl:510.912 +step:600 ppl:451.545 +step:700 ppl:364.404 +step:800 ppl:324.272 +step:900 ppl:360.797 +step:1000 ppl:275.761 +step:1100 ppl:294.599 +step:1200 ppl:335.877 +step:1300 ppl:185.262 +step:1400 ppl:241.744 +step:1500 ppl:211.507 +step:1600 ppl:233.431 +step:1700 ppl:298.767 +step:1800 ppl:203.403 +step:1900 ppl:158.828 +step:2000 ppl:171.148 +step:2100 ppl:280.884 +epoch:1 num_steps:2104 time_cost(s):47.478780 +model saved in model/epoch_1 +epoch_2 start +step:100 ppl:238.099 +step:200 ppl:136.527 +step:300 ppl:204.184 +step:400 ppl:252.886 +step:500 ppl:177.377 +step:600 ppl:197.688 +step:700 ppl:131.650 +step:800 ppl:223.906 +step:900 ppl:144.785 +step:1000 ppl:176.286 +step:1100 ppl:148.158 +step:1200 ppl:203.581 +step:1300 ppl:168.208 +step:1400 ppl:159.412 +step:1500 ppl:114.032 +step:1600 ppl:157.985 +step:1700 ppl:147.743 +step:1800 ppl:88.676 +step:1900 ppl:141.962 +step:2000 ppl:106.087 +step:2100 ppl:122.709 +epoch:2 num_steps:2104 time_cost(s):47.583789 +model saved in model/epoch_2 +... +``` + +## 预测 +运行命令 `python infer.py model_dir start_epoch last_epoch(inclusive)` 开始预测,其中,start_epoch指定开始预测的轮次,last_epoch指定结束的轮次,例如 +```python +python infer.py model 1 12 # prediction from epoch 1 to epoch 12 +``` + +## 预测结果示例 +```text +model:model/epoch_1 ppl:254.540 time_cost(s):3.29 +model:model/epoch_2 ppl:177.671 time_cost(s):3.27 +model:model/epoch_3 ppl:156.251 time_cost(s):3.27 +model:model/epoch_4 ppl:139.036 time_cost(s):3.27 +model:model/epoch_5 ppl:132.661 time_cost(s):3.27 +model:model/epoch_6 ppl:130.092 time_cost(s):3.28 +model:model/epoch_7 ppl:128.751 time_cost(s):3.27 +model:model/epoch_8 ppl:125.411 time_cost(s):3.27 +model:model/epoch_9 ppl:124.604 time_cost(s):3.28 +model:model/epoch_10 ppl:124.754 time_cost(s):3.29 +model:model/epoch_11 ppl:125.421 time_cost(s):3.27 +model:model/epoch_12 ppl:125.676 time_cost(s):3.27 +``` diff --git a/fluid/language_model/gru/_ce.py b/fluid/language_model/gru/_ce.py new file mode 100644 index 0000000000000000000000000000000000000000..d4999d7a1e14e333f1c7056b3dc2c5b506682ec6 --- /dev/null +++ b/fluid/language_model/gru/_ce.py @@ -0,0 +1,62 @@ +# this file is only used for continuous evaluation test! + +import os +import sys +sys.path.append(os.environ['ceroot']) +from kpi import CostKpi +from kpi import DurationKpi + +imikolov_20_avg_ppl_kpi = CostKpi('imikolov_20_avg_ppl', 0.2, 0) +imikolov_20_pass_duration_kpi = DurationKpi( + 'imikolov_20_pass_duration', 0.02, 0, actived=True) +imikolov_20_avg_ppl_kpi_card4 = CostKpi('imikolov_20_avg_ppl_card4', 0.2, 0) +imikolov_20_pass_duration_kpi_card4 = DurationKpi( + 'imikolov_20_pass_duration_card4', 0.03, 0, actived=True) + +tracking_kpis = [ + imikolov_20_avg_ppl_kpi, + imikolov_20_pass_duration_kpi, + imikolov_20_avg_ppl_kpi_card4, + imikolov_20_pass_duration_kpi_card4, +] + + +def parse_log(log): + ''' + This method should be implemented by model developers. + + The suggestion: + + each line in the log should be key, value, for example: + + " + train_cost\t1.0 + test_cost\t1.0 + train_cost\t1.0 + train_cost\t1.0 + train_acc\t1.2 + " + ''' + for line in log.split('\n'): + fs = line.strip().split('\t') + print(fs) + if len(fs) == 3 and fs[0] == 'kpis': + kpi_name = fs[1] + kpi_value = float(fs[2]) + yield kpi_name, kpi_value + + +def log_to_ce(log): + kpi_tracker = {} + for kpi in tracking_kpis: + kpi_tracker[kpi.name] = kpi + + for (kpi_name, kpi_value) in parse_log(log): + print(kpi_name, kpi_value) + kpi_tracker[kpi_name].add_record(kpi_value) + kpi_tracker[kpi_name].persist() + + +if __name__ == '__main__': + log = sys.stdin.read() + log_to_ce(log) diff --git a/fluid/language_model/gru/infer.py b/fluid/language_model/gru/infer.py new file mode 100644 index 0000000000000000000000000000000000000000..ad03ef396f2ad68236204facd3d244b1dc3079a9 --- /dev/null +++ b/fluid/language_model/gru/infer.py @@ -0,0 +1,66 @@ +import sys +import time +import math +import unittest +import contextlib +import numpy as np +import six + +import paddle +import paddle.fluid as fluid + +import utils + + +def infer(test_reader, use_cuda, model_path): + """ inference function """ + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + + with fluid.scope_guard(fluid.core.Scope()): + infer_program, feed_target_names, fetch_vars = fluid.io.load_inference_model( + model_path, exe) + + accum_cost = 0.0 + accum_words = 0 + t0 = time.time() + for data in test_reader(): + src_wordseq = utils.to_lodtensor([dat[0] for dat in data], place) + dst_wordseq = utils.to_lodtensor([dat[1] for dat in data], place) + avg_cost = exe.run( + infer_program, + feed={"src_wordseq": src_wordseq, + "dst_wordseq": dst_wordseq}, + fetch_list=fetch_vars) + + nwords = src_wordseq.lod()[0][-1] + + cost = np.array(avg_cost) * nwords + accum_cost += cost + accum_words += nwords + + ppl = math.exp(accum_cost / accum_words) + t1 = time.time() + print("model:%s ppl:%.3f time_cost(s):%.2f" % + (model_path, ppl, t1 - t0)) + + +if __name__ == "__main__": + if len(sys.argv) != 4: + print("Usage: %s model_dir start_epoch last_epoch(inclusive)") + exit(0) + + model_dir = sys.argv[1] + try: + start_index = int(sys.argv[2]) + last_index = int(sys.argv[3]) + except: + print("Usage: %s model_dir start_epoch last_epoch(inclusive)") + exit(-1) + + vocab, train_reader, test_reader = utils.prepare_data( + batch_size=20, buffer_size=1000, word_freq_threshold=0) + + for epoch in six.moves.xrange(start_index, last_index + 1): + epoch_path = model_dir + "/epoch_" + str(epoch) + infer(test_reader=test_reader, use_cuda=True, model_path=epoch_path) diff --git a/fluid/language_model/gru/train.py b/fluid/language_model/gru/train.py new file mode 100644 index 0000000000000000000000000000000000000000..a999d37e4142044b5ae9340d2db514cb1183c4e1 --- /dev/null +++ b/fluid/language_model/gru/train.py @@ -0,0 +1,202 @@ +import os +import sys +import time +import six + +import numpy as np +import math +import argparse +import paddle.fluid as fluid +import paddle + +import utils + +SEED = 102 + + +def parse_args(): + parser = argparse.ArgumentParser("language_model benchmark.") + parser.add_argument( + '--enable_ce', + action='store_true', + help='If set, run \ + the task with continuous evaluation logs.') + parser.add_argument( + '--num_devices', type=int, default=1, help='Number of GPU devices') + args = parser.parse_args() + return args + + +def network(src, dst, vocab_size, hid_size, init_low_bound, init_high_bound): + """ network definition """ + emb_lr_x = 10.0 + gru_lr_x = 1.0 + fc_lr_x = 1.0 + emb = fluid.layers.embedding( + input=src, + size=[vocab_size, hid_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=emb_lr_x), + is_sparse=True) + + fc0 = fluid.layers.fc(input=emb, + size=hid_size * 3, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=gru_lr_x)) + gru_h0 = fluid.layers.dynamic_gru( + input=fc0, + size=hid_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=gru_lr_x)) + + fc = fluid.layers.fc(input=gru_h0, + size=vocab_size, + act='softmax', + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=fc_lr_x)) + + cost = fluid.layers.cross_entropy(input=fc, label=dst) + return cost + + +def train(train_reader, + vocab, + network, + hid_size, + base_lr, + batch_size, + pass_num, + use_cuda, + parallel, + model_dir, + init_low_bound=-0.04, + init_high_bound=0.04): + """ train network """ + + args = parse_args() + if args.enable_ce: + # random seed must set before configuring the network. + fluid.default_startup_program().random_seed = SEED + vocab_size = len(vocab) + + #Input data + src_wordseq = fluid.layers.data( + name="src_wordseq", shape=[1], dtype="int64", lod_level=1) + dst_wordseq = fluid.layers.data( + name="dst_wordseq", shape=[1], dtype="int64", lod_level=1) + + # Train program + avg_cost = None + cost = network(src_wordseq, dst_wordseq, vocab_size, hid_size, + init_low_bound, init_high_bound) + avg_cost = fluid.layers.mean(x=cost) + + # Optimization to minimize lost + sgd_optimizer = fluid.optimizer.SGD( + learning_rate=fluid.layers.exponential_decay( + learning_rate=base_lr, + decay_steps=2100 * 4, + decay_rate=0.5, + staircase=True)) + sgd_optimizer.minimize(avg_cost) + + # Initialize executor + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(fluid.default_startup_program()) + + train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name) + + total_time = 0.0 + fetch_list = [avg_cost.name] + for pass_idx in six.moves.xrange(pass_num): + epoch_idx = pass_idx + 1 + print("epoch_%d start" % epoch_idx) + + t0 = time.time() + i = 0 + newest_ppl = 0 + for data in train_reader(): + i += 1 + lod_src_wordseq = utils.to_lodtensor([dat[0] for dat in data], + place) + lod_dst_wordseq = utils.to_lodtensor([dat[1] for dat in data], + place) + ret_avg_cost = train_exe.run(feed={ + "src_wordseq": lod_src_wordseq, + "dst_wordseq": lod_dst_wordseq + }, + fetch_list=fetch_list) + avg_ppl = np.exp(ret_avg_cost[0]) + newest_ppl = np.mean(avg_ppl) + if i % 100 == 0: + print("step:%d ppl:%.3f" % (i, newest_ppl)) + + t1 = time.time() + total_time += t1 - t0 + print("epoch:%d num_steps:%d time_cost(s):%f" % + (epoch_idx, i, total_time / epoch_idx)) + + if pass_idx == pass_num - 1 and args.enable_ce: + #Note: The following logs are special for CE monitoring. + #Other situations do not need to care about these logs. + gpu_num = get_cards(args.enable_ce) + if gpu_num == 1: + print("kpis imikolov_20_pass_duration %s" % + (total_time / epoch_idx)) + print("kpis imikolov_20_avg_ppl %s" % newest_ppl) + else: + print("kpis imikolov_20_pass_duration_card%s %s" % \ + (gpu_num, total_time / epoch_idx)) + print("kpis imikolov_20_avg_ppl_card%s %s" % + (gpu_num, newest_ppl)) + save_dir = "%s/epoch_%d" % (model_dir, epoch_idx) + feed_var_names = ["src_wordseq", "dst_wordseq"] + fetch_vars = [avg_cost] + fluid.io.save_inference_model(save_dir, feed_var_names, fetch_vars, exe) + print("model saved in %s" % save_dir) + + print("finish training") + + +def get_cards(args): + if args.enable_ce: + cards = os.environ.get('CUDA_VISIBLE_DEVICES') + num = len(cards.split(",")) + return num + else: + return args.num_devices + + +def train_net(): + """ do training """ + batch_size = 20 + args = parse_args() + vocab, train_reader, test_reader = utils.prepare_data( + batch_size=batch_size * get_cards(args), buffer_size=1000, \ + word_freq_threshold=0, enable_ce = args.enable_ce) + train( + train_reader=train_reader, + vocab=vocab, + network=network, + hid_size=200, + base_lr=1.0, + batch_size=batch_size, + pass_num=12, + use_cuda=True, + parallel=True, + model_dir="model", + init_low_bound=-0.1, + init_high_bound=0.1) + + +if __name__ == "__main__": + train_net() diff --git a/fluid/language_model/gru/train_on_cloud.py b/fluid/language_model/gru/train_on_cloud.py new file mode 100644 index 0000000000000000000000000000000000000000..9a912a1e4ffc552f699cd4d9d41999bb3422d369 --- /dev/null +++ b/fluid/language_model/gru/train_on_cloud.py @@ -0,0 +1,288 @@ +import os +import sys +import time +import six + +import numpy as np +import math + +import collections +import paddle +import paddle.fluid as fluid +import paddle.fluid.framework as framework + +cluster_train_dir = "./train/" +cluster_test_dir = "./test/" +train_file = "ptb.train.txt" +valid_file = "ptb.valid.txt" +test_file = "ptb.test.txt" + + +class DataType(object): + """ data type """ + NGRAM = 1 + SEQ = 2 + + +def word_count(f, word_freq=None): + """ count words """ + if word_freq is None: + word_freq = collections.defaultdict(int) + + for line in f: + for w in line.strip().split(): + word_freq[w] += 1 + word_freq[''] += 1 + word_freq[''] += 1 + + return word_freq + + +def build_dict(min_word_freq=50): + """ build dictionary """ + train_filename = cluster_train_dir + train_file + test_filename = cluster_test_dir + valid_file + trainf = open(train_filename).readlines() + testf = open(test_filename).readlines() + word_freq = word_count(testf, word_count(trainf)) + if '' in word_freq: + del word_freq[''] + word_freq = filter(lambda x: x[1] > min_word_freq, word_freq.items()) + word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0])) + words, _ = list(zip(*word_freq_sorted)) + word_idx = dict(zip(words, six.moves.xrange(len(words)))) + word_idx[''] = len(words) + return word_idx + + +def reader_creator(filename, word_idx, n, data_type): + """ create reader """ + + def reader(): + if True: + f = open(filename).readlines() + UNK = word_idx[''] + for line in f: + if DataType.NGRAM == data_type: + assert n > -1, 'Invalid gram length' + line = [''] + line.strip().split() + [''] + if len(line) >= n: + line = [word_idx.get(w, UNK) for w in line] + for i in range(n, len(line) + 1): + yield tuple(line[i - n:i]) + elif DataType.SEQ == data_type: + line = line.strip().split() + line = [word_idx.get(w, UNK) for w in line] + src_seq = [word_idx['']] + line + trg_seq = line + [word_idx['']] + if n > 0 and len(src_seq) > n: + continue + yield src_seq, trg_seq + else: + assert False, 'Unknow data type' + + return reader + + +def to_lodtensor(data, place): + """ convert to LODtensor """ + seq_lens = [len(seq) for seq in data] + cur_len = 0 + lod = [cur_len] + for line in seq_lens: + cur_len += line + lod.append(cur_len) + flattened_data = np.concatenate(data, axis=0).astype("int64") + flattened_data = flattened_data.reshape([len(flattened_data), 1]) + res = fluid.LoDTensor() + res.set(flattened_data, place) + res.set_lod([lod]) + return res + + +def prepare_data(batch_size, buffer_size=1000, word_freq_threshold=0): + """ prepare the English Pann Treebank (PTB) data """ + vocab = build_dict(word_freq_threshold) + train_reader = paddle.batch( + paddle.reader.shuffle( + reader_creator( + cluster_train_dir + train_file, + vocab, + buffer_size, + data_type=DataType.SEQ), + buf_size=buffer_size), + batch_size) + test_reader = paddle.batch( + reader_creator( + cluster_test_dir + test_file, + vocab, + buffer_size, + data_type=DataType.SEQ), + batch_size) + return vocab, train_reader, test_reader + + +def network(src, dst, vocab_size, hid_size, init_low_bound, init_high_bound): + """ network definition """ + emb_lr_x = 10.0 + gru_lr_x = 1.0 + fc_lr_x = 1.0 + emb = fluid.layers.embedding( + input=src, + size=[vocab_size, hid_size], + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=emb_lr_x), + is_sparse=True) + + fc0 = fluid.layers.fc(input=emb, + size=hid_size * 3, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=gru_lr_x)) + gru_h0 = fluid.layers.dynamic_gru( + input=fc0, + size=hid_size, + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=gru_lr_x)) + + fc = fluid.layers.fc(input=gru_h0, + size=vocab_size, + act='softmax', + param_attr=fluid.ParamAttr( + initializer=fluid.initializer.Uniform( + low=init_low_bound, high=init_high_bound), + learning_rate=fc_lr_x)) + + cost = fluid.layers.cross_entropy(input=fc, label=dst) + return cost + + +def do_train(train_reader, + vocab, + network, + hid_size, + base_lr, + batch_size, + pass_num, + use_cuda, + parallel, + model_dir, + init_low_bound=-0.04, + init_high_bound=0.04): + """ train network """ + vocab_size = len(vocab) + + src_wordseq = fluid.layers.data( + name="src_wordseq", shape=[1], dtype="int64", lod_level=1) + dst_wordseq = fluid.layers.data( + name="dst_wordseq", shape=[1], dtype="int64", lod_level=1) + + avg_cost = None + if not parallel: + cost = network(src_wordseq, dst_wordseq, vocab_size, hid_size, + init_low_bound, init_high_bound) + avg_cost = fluid.layers.mean(x=cost) + else: + places = fluid.layers.device.get_places() + pd = fluid.layers.ParallelDo(places) + with pd.do(): + cost = network( + pd.read_input(src_wordseq), + pd.read_input(dst_wordseq), vocab_size, hid_size, + init_low_bound, init_high_bound) + pd.write_output(cost) + + cost = pd() + avg_cost = fluid.layers.mean(x=cost) + + sgd_optimizer = fluid.optimizer.SGD( + learning_rate=fluid.layers.exponential_decay( + learning_rate=base_lr, + decay_steps=2100 * 4, + decay_rate=0.5, + staircase=True)) + sgd_optimizer.minimize(avg_cost) + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + + exe.run(fluid.default_startup_program()) + total_time = 0.0 + for pass_idx in six.moves.xrange(pass_num): + epoch_idx = pass_idx + 1 + print("epoch_%d start" % epoch_idx) + + t0 = time.time() + i = 0 + for data in train_reader(): + i += 1 + lod_src_wordseq = to_lodtensor([dat[0] for dat in data], place) + lod_dst_wordseq = to_lodtensor([dat[1] for dat in data], place) + ret_avg_cost = exe.run(fluid.default_main_program(), + feed={ + "src_wordseq": lod_src_wordseq, + "dst_wordseq": lod_dst_wordseq + }, + fetch_list=[avg_cost], + use_program_cache=True) + avg_ppl = math.exp(ret_avg_cost[0]) + if i % 100 == 0: + print("step:%d ppl:%.3f" % (i, avg_ppl)) + + t1 = time.time() + total_time += t1 - t0 + print("epoch:%d num_steps:%d time_cost(s):%f" % + (epoch_idx, i, total_time / epoch_idx)) + + save_dir = "%s/epoch_%d" % (model_dir, epoch_idx) + feed_var_names = ["src_wordseq", "dst_wordseq"] + fetch_vars = [avg_cost] + fluid.io.save_inference_model(save_dir, feed_var_names, fetch_vars, exe) + print("model saved in %s" % save_dir) + + print("finish training") + + +def train(): + """ do training """ + batch_size = 20 + vocab, train_reader, test_reader = prepare_data( + batch_size=batch_size, buffer_size=1000, word_freq_threshold=0) + + # End batch and end pass event handler + def event_handler(event): + """ event handler """ + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 100 == 0: + print("\nPass %d, Batch %d, Cost %f, %s" % ( + event.pass_id, event.batch_id, event.cost, event.metrics)) + else: + sys.stdout.write('.') + sys.stdout.flush() + if isinstance(event, paddle.event.EndPass): + print("isinstance(event, paddle.event.EndPass)") + + do_train( + train_reader=train_reader, + vocab=vocab, + network=network, + hid_size=200, + base_lr=1.0, + batch_size=batch_size, + pass_num=12, + use_cuda=True, + parallel=False, + model_dir="./output/model", + init_low_bound=-0.1, + init_high_bound=0.1) + + +if __name__ == "__main__": + if not os.path.exists("./output/model"): + os.makedirs("./output/model") + train() diff --git a/fluid/language_model/gru/utils.py b/fluid/language_model/gru/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..dd03a89835e620dc8432a6ca16392fc5173a12d4 --- /dev/null +++ b/fluid/language_model/gru/utils.py @@ -0,0 +1,51 @@ +import sys +import time +import numpy as np + +import paddle.fluid as fluid +import paddle + + +def to_lodtensor(data, place): + """ convert to LODtensor """ + seq_lens = [len(seq) for seq in data] + cur_len = 0 + lod = [cur_len] + for l in seq_lens: + cur_len += l + lod.append(cur_len) + flattened_data = np.concatenate(data, axis=0).astype("int64") + flattened_data = flattened_data.reshape([len(flattened_data), 1]) + res = fluid.LoDTensor() + res.set(flattened_data, place) + res.set_lod([lod]) + return res + + +def prepare_data(batch_size, + buffer_size=1000, + word_freq_threshold=0, + enable_ce=False): + """ prepare the English Pann Treebank (PTB) data """ + vocab = paddle.dataset.imikolov.build_dict(word_freq_threshold) + if enable_ce: + train_reader = paddle.batch( + paddle.dataset.imikolov.train( + vocab, + buffer_size, + data_type=paddle.dataset.imikolov.DataType.SEQ), + batch_size) + else: + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.imikolov.train( + vocab, + buffer_size, + data_type=paddle.dataset.imikolov.DataType.SEQ), + buf_size=buffer_size), + batch_size) + test_reader = paddle.batch( + paddle.dataset.imikolov.test( + vocab, buffer_size, data_type=paddle.dataset.imikolov.DataType.SEQ), + batch_size) + return vocab, train_reader, test_reader diff --git a/fluid/language_model/lstm/.run_ce.sh b/fluid/language_model/lstm/.run_ce.sh new file mode 100644 index 0000000000000000000000000000000000000000..8c192ad62e5b66bc4c7f3150d2e24507662491d8 --- /dev/null +++ b/fluid/language_model/lstm/.run_ce.sh @@ -0,0 +1,11 @@ +export CUDA_VISIBLE_DEVICES=0 +cd data +sh download_data.sh +cd .. + +python train.py \ + --data_path data/simple-examples/data/ \ + --model_type small \ + --use_gpu True \ + --enable_ce | python _ce.py + diff --git a/fluid/language_model/lstm/README.md b/fluid/language_model/lstm/README.md new file mode 100644 index 0000000000000000000000000000000000000000..f6d1250ff66a066c8634eca9c3f74312f00a7749 --- /dev/null +++ b/fluid/language_model/lstm/README.md @@ -0,0 +1,76 @@ +# lstm lm + +以下是本例的简要目录结构及说明: + +```text +. +├── README.md # 文档 +├── train.py # 训练脚本 +├── reader.py # 数据读取 +└── lm_model.py # 模型定义文件 +``` + + +## 简介 + +循环神经网络语言模型的介绍可以参阅论文[Recurrent Neural Network Regularization](https://arxiv.org/abs/1409.2329),本文主要是说明基于lstm的语言的模型的实现,数据是采用ptb dataset,下载地址为 +http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz + +## 数据下载 +用户可以自行下载数据,并解压, 也可以利用目录中的脚本 + +cd data; sh download_data.sh + +## 训练 + +运行命令 +`CUDA_VISIBLE_DEVICES=0 python train.py --data_path data/simple-examples/data/ --model_type small --use_gpu True` + 开始训练模型。 + +model_type 为模型配置的大小,目前支持 small,medium, large 三种配置形式 + +实现采用双层的lstm,具体的参数和网络配置 可以参考 train.py, lm_model.py 文件中的设置 + + +## 训练结果示例 + +p40中训练日志如下(small config), test 测试集仅在最后一个epoch完成后进行测试 +```text +epoch id 0 +ppl 232 865.86505 1.0 +ppl 464 632.76526 1.0 +ppl 696 510.47153 1.0 +ppl 928 437.60617 1.0 +ppl 1160 393.38422 1.0 +ppl 1392 353.05365 1.0 +ppl 1624 325.73267 1.0 +ppl 1856 305.488 1.0 +ppl 2088 286.3128 1.0 +ppl 2320 270.91504 1.0 +train ppl 270.86246 +valid ppl 181.867964379 +... +ppl 2320 40.975872 0.001953125 +train ppl 40.974102 +valid ppl 117.85741214 +test ppl 113.939103843 +``` +## 与tf结果对比 + +tf采用的版本是1.6 +```text +small config + train valid test +fluid 1.0 40.962 118.111 112.617 +tf 1.6 40.492 118.329 113.788 + +medium config + train valid test +fluid 1.0 45.620 87.398 83.682 +tf 1.6 45.594 87.363 84.015 + +large config + train valid test +fluid 1.0 37.221 82.358 78.137 +tf 1.6 38.342 82.311 78.121 +``` diff --git a/fluid/language_model/lstm/_ce.py b/fluid/language_model/lstm/_ce.py new file mode 100644 index 0000000000000000000000000000000000000000..f537f6aa62dd502c79174fadedda0da621c8eb7b --- /dev/null +++ b/fluid/language_model/lstm/_ce.py @@ -0,0 +1,56 @@ +# this file is only used for continuous evaluation test! + +import os +import sys +sys.path.append(os.environ['ceroot']) +from kpi import CostKpi +from kpi import DurationKpi + +imikolov_20_avg_ppl_kpi = CostKpi('lstm_language_model_loss', 0.02, 0) +imikolov_20_pass_duration_kpi = DurationKpi( + 'lstm_language_model_duration', 0.02, 0, actived=True) + +tracking_kpis = [ + imikolov_20_avg_ppl_kpi, + imikolov_20_pass_duration_kpi, +] + + +def parse_log(log): + ''' + This method should be implemented by model developers. + + The suggestion: + + each line in the log should be key, value, for example: + + " + train_cost\t1.0 + test_cost\t1.0 + train_cost\t1.0 + train_cost\t1.0 + train_acc\t1.2 + " + ''' + for line in log.split('\n'): + fs = line.strip().split('\t') + print(fs) + kpi_name = fs[0] + kpi_value = float(fs[1]) + yield kpi_name, kpi_value + + +def log_to_ce(log): + kpi_tracker = {} + for kpi in tracking_kpis: + kpi_tracker[kpi.name] = kpi + + for (kpi_name, kpi_value) in parse_log(log): + print(kpi_name, kpi_value) + kpi_tracker[kpi_name].add_record(kpi_value) + kpi_tracker[kpi_name].persist() + + +if __name__ == '__main__': + log = sys.stdin.read() + log_to_ce(log) diff --git a/fluid/language_model/lstm/args.py b/fluid/language_model/lstm/args.py new file mode 100644 index 0000000000000000000000000000000000000000..498fd9437885238c09e721ee6b182c6d6764398b --- /dev/null +++ b/fluid/language_model/lstm/args.py @@ -0,0 +1,40 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import distutils.util + + +def parse_args(): + parser = argparse.ArgumentParser(description=__doc__) + parser.add_argument( + "--model_type", + type=str, + default="small", + help="model_type [test|small|med|big]") + parser.add_argument( + "--data_path", type=str, help="all the data for train,valid,test") + parser.add_argument('--para_init', action='store_true') + parser.add_argument( + '--use_gpu', type=bool, default=False, help='whether using gpu') + parser.add_argument( + '--log_path', + help='path of the log file. If not set, logs are printed to console') + parser.add_argument('--enable_ce', action='store_true') + args = parser.parse_args() + return args diff --git a/fluid/language_model/lstm/data/download_data.sh b/fluid/language_model/lstm/data/download_data.sh new file mode 100644 index 0000000000000000000000000000000000000000..29966c7663a60ad802e273727496acb6381c98ca --- /dev/null +++ b/fluid/language_model/lstm/data/download_data.sh @@ -0,0 +1,4 @@ + +wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz + +tar -xzvf simple-examples.tgz diff --git a/fluid/language_model/lstm/lm_model.py b/fluid/language_model/lstm/lm_model.py new file mode 100644 index 0000000000000000000000000000000000000000..b52b18f9b95ea4654ca35419fb8b4b577e586577 --- /dev/null +++ b/fluid/language_model/lstm/lm_model.py @@ -0,0 +1,285 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle.fluid.layers as layers +import paddle.fluid as fluid +from paddle.fluid.layers.control_flow import StaticRNN as PaddingRNN +import numpy as np + + +def lm_model(hidden_size, + vocab_size, + batch_size, + num_layers=2, + num_steps=20, + init_scale=0.1, + dropout=None): + def padding_rnn(input_embedding, len=3, init_hidden=None, init_cell=None): + weight_1_arr = [] + weight_2_arr = [] + bias_arr = [] + hidden_array = [] + cell_array = [] + mask_array = [] + for i in range(num_layers): + weight_1 = layers.create_parameter([hidden_size * 2, hidden_size*4], dtype="float32", name="fc_weight1_"+str(i), \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + weight_1_arr.append(weight_1) + bias_1 = layers.create_parameter( + [hidden_size * 4], + dtype="float32", + name="fc_bias1_" + str(i), + default_initializer=fluid.initializer.Constant(0.0)) + bias_arr.append(bias_1) + + pre_hidden = layers.slice( + init_hidden, axes=[0], starts=[i], ends=[i + 1]) + pre_cell = layers.slice( + init_cell, axes=[0], starts=[i], ends=[i + 1]) + pre_hidden = layers.reshape(pre_hidden, shape=[-1, hidden_size]) + pre_cell = layers.reshape(pre_cell, shape=[-1, hidden_size]) + hidden_array.append(pre_hidden) + cell_array.append(pre_cell) + + input_embedding = layers.transpose(input_embedding, perm=[1, 0, 2]) + rnn = PaddingRNN() + + with rnn.step(): + input = rnn.step_input(input_embedding) + for k in range(num_layers): + pre_hidden = rnn.memory(init=hidden_array[k]) + pre_cell = rnn.memory(init=cell_array[k]) + weight_1 = weight_1_arr[k] + bias = bias_arr[k] + + nn = layers.concat([input, pre_hidden], 1) + gate_input = layers.matmul(x=nn, y=weight_1) + + gate_input = layers.elementwise_add(gate_input, bias) + #i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + i = layers.slice( + gate_input, axes=[1], starts=[0], ends=[hidden_size]) + j = layers.slice( + gate_input, + axes=[1], + starts=[hidden_size], + ends=[hidden_size * 2]) + f = layers.slice( + gate_input, + axes=[1], + starts=[hidden_size * 2], + ends=[hidden_size * 3]) + o = layers.slice( + gate_input, + axes=[1], + starts=[hidden_size * 3], + ends=[hidden_size * 4]) + + c = pre_cell * layers.sigmoid(f) + layers.sigmoid( + i) * layers.tanh(j) + m = layers.tanh(c) * layers.sigmoid(o) + + rnn.update_memory(pre_hidden, m) + rnn.update_memory(pre_cell, c) + + rnn.step_output(m) + rnn.step_output(c) + + input = m + + if dropout != None and dropout > 0.0: + input = layers.dropout( + input, + dropout_prob=dropout, + dropout_implementation='upscale_in_train') + + rnn.step_output(input) + #real_res = layers.concat(res, 0) + rnnout = rnn() + + last_hidden_array = [] + last_cell_array = [] + real_res = rnnout[-1] + for i in range(num_layers): + m = rnnout[i * 2] + c = rnnout[i * 2 + 1] + m.stop_gradient = True + c.stop_gradient = True + last_h = layers.slice( + m, axes=[0], starts=[num_steps - 1], ends=[num_steps]) + last_hidden_array.append(last_h) + last_c = layers.slice( + c, axes=[0], starts=[num_steps - 1], ends=[num_steps]) + last_cell_array.append(last_c) + ''' + else: + real_res = rnnout[-1] + for i in range( num_layers ): + + m1, c1, m2, c2 = rnnout + real_res = m2 + m1.stop_gradient = True + c1.stop_gradient = True + c2.stop_gradient = True + ''' + + #layers.Print( first_hidden, message="22", summarize=10) + #layers.Print( rnnout[1], message="11", summarize=10) + #real_res = ( rnnout[1] + rnnout[2] + rnnout[3] + rnnout[4]) / 4.0 + real_res = layers.transpose(x=real_res, perm=[1, 0, 2]) + last_hidden = layers.concat(last_hidden_array, 0) + last_cell = layers.concat(last_cell_array, 0) + ''' + last_hidden = layers.concat( hidden_array, 1 ) + last_hidden = layers.reshape( last_hidden, shape=[-1, num_layers, hidden_size]) + last_hidden = layers.transpose( x = last_hidden, perm = [1, 0, 2]) + last_cell = layers.concat( cell_array, 1) + last_cell = layers.reshape( last_cell, shape=[ -1, num_layers, hidden_size]) + last_cell = layers.transpose( x = last_cell, perm = [1, 0, 2]) + ''' + + return real_res, last_hidden, last_cell + + def encoder_static(input_embedding, len=3, init_hidden=None, + init_cell=None): + + weight_1_arr = [] + weight_2_arr = [] + bias_arr = [] + hidden_array = [] + cell_array = [] + mask_array = [] + for i in range(num_layers): + weight_1 = layers.create_parameter([hidden_size * 2, hidden_size*4], dtype="float32", name="fc_weight1_"+str(i), \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + weight_1_arr.append(weight_1) + bias_1 = layers.create_parameter( + [hidden_size * 4], + dtype="float32", + name="fc_bias1_" + str(i), + default_initializer=fluid.initializer.Constant(0.0)) + bias_arr.append(bias_1) + + pre_hidden = layers.slice( + init_hidden, axes=[0], starts=[i], ends=[i + 1]) + pre_cell = layers.slice( + init_cell, axes=[0], starts=[i], ends=[i + 1]) + pre_hidden = layers.reshape(pre_hidden, shape=[-1, hidden_size]) + pre_cell = layers.reshape(pre_cell, shape=[-1, hidden_size]) + hidden_array.append(pre_hidden) + cell_array.append(pre_cell) + + res = [] + for index in range(len): + input = layers.slice( + input_embedding, axes=[1], starts=[index], ends=[index + 1]) + input = layers.reshape(input, shape=[-1, hidden_size]) + for k in range(num_layers): + pre_hidden = hidden_array[k] + pre_cell = cell_array[k] + weight_1 = weight_1_arr[k] + bias = bias_arr[k] + + nn = layers.concat([input, pre_hidden], 1) + gate_input = layers.matmul(x=nn, y=weight_1) + + gate_input = layers.elementwise_add(gate_input, bias) + i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + + c = pre_cell * layers.sigmoid(f) + layers.sigmoid( + i) * layers.tanh(j) + m = layers.tanh(c) * layers.sigmoid(o) + + hidden_array[k] = m + cell_array[k] = c + input = m + + if dropout != None and dropout > 0.0: + input = layers.dropout( + input, + dropout_prob=dropout, + dropout_implementation='upscale_in_train') + + res.append(layers.reshape(input, shape=[1, -1, hidden_size])) + real_res = layers.concat(res, 0) + real_res = layers.transpose(x=real_res, perm=[1, 0, 2]) + last_hidden = layers.concat(hidden_array, 1) + last_hidden = layers.reshape( + last_hidden, shape=[-1, num_layers, hidden_size]) + last_hidden = layers.transpose(x=last_hidden, perm=[1, 0, 2]) + last_cell = layers.concat(cell_array, 1) + last_cell = layers.reshape( + last_cell, shape=[-1, num_layers, hidden_size]) + last_cell = layers.transpose(x=last_cell, perm=[1, 0, 2]) + + return real_res, last_hidden, last_cell + + x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64') + y = layers.data(name="y", shape=[-1, 1], dtype='float32') + + init_hidden = layers.data(name="init_hidden", shape=[1], dtype='float32') + init_cell = layers.data(name="init_cell", shape=[1], dtype='float32') + + init_hidden = layers.reshape( + init_hidden, shape=[num_layers, -1, hidden_size]) + init_cell = layers.reshape(init_cell, shape=[num_layers, -1, hidden_size]) + + x_emb = layers.embedding( + input=x, + size=[vocab_size, hidden_size], + dtype='float32', + is_sparse=True, + param_attr=fluid.ParamAttr( + name='embedding_para', + initializer=fluid.initializer.UniformInitializer( + low=-init_scale, high=init_scale))) + + x_emb = layers.reshape(x_emb, shape=[-1, num_steps, hidden_size]) + if dropout != None and dropout > 0.0: + x_emb = layers.dropout( + x_emb, + dropout_prob=dropout, + dropout_implementation='upscale_in_train') + + rnn_out, last_hidden, last_cell = padding_rnn( + x_emb, len=num_steps, init_hidden=init_hidden, init_cell=init_cell) + rnn_out = layers.reshape(rnn_out, shape=[-1, num_steps, hidden_size]) + + + softmax_weight = layers.create_parameter([hidden_size, vocab_size], dtype="float32", name="softmax_weight", \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + softmax_bias = layers.create_parameter([vocab_size], dtype="float32", name='softmax_bias', \ + default_initializer=fluid.initializer.UniformInitializer(low=-init_scale, high=init_scale)) + + projection = layers.matmul(rnn_out, softmax_weight) + projection = layers.elementwise_add(projection, softmax_bias) + + projection = layers.reshape(projection, shape=[-1, vocab_size]) + #y = layers.reshape( y, shape=[-1, vocab_size]) + + loss = layers.softmax_with_cross_entropy( + logits=projection, label=y, soft_label=False) + + loss = layers.reshape(loss, shape=[-1, num_steps]) + loss = layers.reduce_mean(loss, dim=[0]) + loss = layers.reduce_sum(loss) + + loss.permissions = True + + feeding_list = ['x', 'y', 'init_hidden', 'init_cell'] + return loss, last_hidden, last_cell, feeding_list diff --git a/fluid/language_model/lstm/reader.py b/fluid/language_model/lstm/reader.py new file mode 100644 index 0000000000000000000000000000000000000000..50e8835ec8b96bf37a7b972700a588034d41425c --- /dev/null +++ b/fluid/language_model/lstm/reader.py @@ -0,0 +1,105 @@ +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Utilities for parsing PTB text files.""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import collections +import os +import sys +import numpy as np + +Py3 = sys.version_info[0] == 3 + + +def _read_words(filename): + data = [] + with open(filename, "r") as f: + return f.read().decode("utf-8").replace("\n", "").split() + + +def _build_vocab(filename): + data = _read_words(filename) + + counter = collections.Counter(data) + count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) + + words, _ = list(zip(*count_pairs)) + + print("vocab word num", len(words)) + word_to_id = dict(zip(words, range(len(words)))) + + return word_to_id + + +def _file_to_word_ids(filename, word_to_id): + data = _read_words(filename) + return [word_to_id[word] for word in data if word in word_to_id] + + +def ptb_raw_data(data_path=None): + """Load PTB raw data from data directory "data_path". + + Reads PTB text files, converts strings to integer ids, + and performs mini-batching of the inputs. + + The PTB dataset comes from Tomas Mikolov's webpage: + + http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz + + Args: + data_path: string path to the directory where simple-examples.tgz has + been extracted. + + Returns: + tuple (train_data, valid_data, test_data, vocabulary) + where each of the data objects can be passed to PTBIterator. + """ + + train_path = os.path.join(data_path, "ptb.train.txt") + #train_path = os.path.join(data_path, "train.fake") + valid_path = os.path.join(data_path, "ptb.valid.txt") + test_path = os.path.join(data_path, "ptb.test.txt") + + word_to_id = _build_vocab(train_path) + train_data = _file_to_word_ids(train_path, word_to_id) + valid_data = _file_to_word_ids(valid_path, word_to_id) + test_data = _file_to_word_ids(test_path, word_to_id) + vocabulary = len(word_to_id) + return train_data, valid_data, test_data, vocabulary + + +def get_data_iter(raw_data, batch_size, num_steps): + data_len = len(raw_data) + raw_data = np.asarray(raw_data, dtype="int64") + + #print( "raw", raw_data[:20] ) + + batch_len = data_len // batch_size + + data = raw_data[0:batch_size * batch_len].reshape((batch_size, batch_len)) + + #h = data.reshape( (-1)) + #print( "h", h[:20]) + + epoch_size = (batch_len - 1) // num_steps + for i in range(epoch_size): + start = i * num_steps + #print( i * num_steps ) + x = np.copy(data[:, i * num_steps:(i + 1) * num_steps]) + y = np.copy(data[:, i * num_steps + 1:(i + 1) * num_steps + 1]) + + yield (x, y) diff --git a/fluid/language_model/lstm/train.py b/fluid/language_model/lstm/train.py new file mode 100644 index 0000000000000000000000000000000000000000..fc058c6a0e80f4aeba76656fe505207846d66e2f --- /dev/null +++ b/fluid/language_model/lstm/train.py @@ -0,0 +1,300 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import time +import os +import random + +import math + +import paddle +import paddle.fluid as fluid +import paddle.fluid.core as core +import paddle.fluid.framework as framework +from paddle.fluid.executor import Executor + +import reader + +import sys +if sys.version[0] == '2': + reload(sys) + sys.setdefaultencoding("utf-8") +sys.path.append('..') +import os +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" + +from args import * +import lm_model +import logging +import pickle + +SEED = 123 + + +def get_current_model_para(train_prog, train_exe): + param_list = train_prog.block(0).all_parameters() + param_name_list = [p.name for p in param_list] + + vals = {} + for p_name in param_name_list: + p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) + vals[p_name] = p_array + + return vals + + +def save_para_npz(train_prog, train_exe): + print("begin to save model to model_base") + param_list = train_prog.block(0).all_parameters() + param_name_list = [p.name for p in param_list] + + vals = {} + for p_name in param_name_list: + p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) + vals[p_name] = p_array + + emb = vals["embedding_para"] + print("begin to save model to model_base") + np.savez("mode_base", **vals) + + +def train(): + args = parse_args() + model_type = args.model_type + logger = logging.getLogger("lm") + logger.setLevel(logging.INFO) + formatter = logging.Formatter( + '%(asctime)s - %(name)s - %(levelname)s - %(message)s') + if args.enable_ce: + fluid.default_startup_program().random_seed = SEED + if args.log_path: + file_handler = logging.FileHandler(args.log_path) + file_handler.setLevel(logging.INFO) + file_handler.setFormatter(formatter) + logger.addHandler(file_handler) + else: + console_handler = logging.StreamHandler() + console_handler.setLevel(logging.INFO) + console_handler.setFormatter(formatter) + logger.addHandler(console_handler) + + logger.info('Running with args : {}'.format(args)) + + vocab_size = 10000 + if model_type == "test": + num_layers = 1 + batch_size = 2 + hidden_size = 10 + num_steps = 3 + init_scale = 0.1 + max_grad_norm = 5.0 + epoch_start_decay = 1 + max_epoch = 1 + dropout = 0.0 + lr_decay = 0.5 + base_learning_rate = 1.0 + elif model_type == "small": + num_layers = 2 + batch_size = 20 + hidden_size = 200 + num_steps = 20 + init_scale = 0.1 + max_grad_norm = 5.0 + epoch_start_decay = 4 + max_epoch = 13 + dropout = 0.0 + lr_decay = 0.5 + base_learning_rate = 1.0 + elif model_type == "medium": + num_layers = 2 + batch_size = 20 + hidden_size = 650 + num_steps = 35 + init_scale = 0.05 + max_grad_norm = 5.0 + epoch_start_decay = 6 + max_epoch = 39 + dropout = 0.5 + lr_decay = 0.8 + base_learning_rate = 1.0 + elif model_type == "large": + num_layers = 2 + batch_size = 20 + hidden_size = 1500 + num_steps = 35 + init_scale = 0.04 + max_grad_norm = 10.0 + epoch_start_decay = 14 + max_epoch = 55 + dropout = 0.65 + lr_decay = 1.0 / 1.15 + base_learning_rate = 1.0 + else: + print("model type not support") + return + + # Training process + loss, last_hidden, last_cell, feed_order = lm_model.lm_model( + hidden_size, + vocab_size, + batch_size, + num_layers=num_layers, + num_steps=num_steps, + init_scale=init_scale, + dropout=dropout) + # clone from default main program and use it as the validation program + main_program = fluid.default_main_program() + inference_program = fluid.default_main_program().clone(for_test=True) + + fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm( + clip_norm=max_grad_norm)) + + learning_rate = fluid.layers.create_global_var( + name="learning_rate", + shape=[1], + value=1.0, + dtype='float32', + persistable=True) + + optimizer = fluid.optimizer.SGD(learning_rate=learning_rate) + + optimizer.minimize(loss) + + place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() + exe = Executor(place) + exe.run(framework.default_startup_program()) + + data_path = args.data_path + print("begin to load data") + raw_data = reader.ptb_raw_data(data_path) + print("finished load data") + train_data, valid_data, test_data, _ = raw_data + + def prepare_input(batch, init_hidden, init_cell, epoch_id=0, with_lr=True): + x, y = batch + new_lr = base_learning_rate * (lr_decay**max( + epoch_id + 1 - epoch_start_decay, 0.0)) + lr = np.ones((1), dtype='float32') * new_lr + res = {} + x = x.reshape((-1, num_steps, 1)) + y = y.reshape((-1, 1)) + + res['x'] = x + res['y'] = y + res['init_hidden'] = init_hidden + res['init_cell'] = init_cell + if with_lr: + res['learning_rate'] = lr + + return res + + def eval(data): + # when eval the batch_size set to 1 + eval_data_iter = reader.get_data_iter(data, 1, num_steps) + total_loss = 0.0 + iters = 0 + init_hidden = np.zeros((num_layers, 1, hidden_size), dtype='float32') + init_cell = np.zeros((num_layers, 1, hidden_size), dtype='float32') + for batch_id, batch in enumerate(eval_data_iter): + input_data_feed = prepare_input( + batch, init_hidden, init_cell, epoch_id, with_lr=False) + fetch_outs = exe.run( + inference_program, + feed=input_data_feed, + fetch_list=[loss.name, last_hidden.name, last_cell.name]) + + cost_train = np.array(fetch_outs[0]) + init_hidden = np.array(fetch_outs[1]) + init_cell = np.array(fetch_outs[2]) + + total_loss += cost_train + iters += num_steps + + ppl = np.exp(total_loss / iters) + return ppl + + # get train epoch size + batch_len = len(train_data) // batch_size + epoch_size = (batch_len - 1) // num_steps + log_interval = epoch_size // 10 + total_time = 0.0 + for epoch_id in range(max_epoch): + start_time = time.time() + print("epoch id", epoch_id) + train_data_iter = reader.get_data_iter(train_data, batch_size, + num_steps) + + total_loss = 0 + + init_hidden = None + init_cell = None + #debug_para(fluid.framework.default_main_program(), parallel_executor) + total_loss = 0 + iters = 0 + init_hidden = np.zeros( + (num_layers, batch_size, hidden_size), dtype='float32') + init_cell = np.zeros( + (num_layers, batch_size, hidden_size), dtype='float32') + for batch_id, batch in enumerate(train_data_iter): + input_data_feed = prepare_input( + batch, init_hidden, init_cell, epoch_id=epoch_id) + fetch_outs = exe.run(feed=input_data_feed, + fetch_list=[ + loss.name, last_hidden.name, + last_cell.name, 'learning_rate' + ]) + + cost_train = np.array(fetch_outs[0]) + init_hidden = np.array(fetch_outs[1]) + init_cell = np.array(fetch_outs[2]) + + lr = np.array(fetch_outs[3]) + + total_loss += cost_train + iters += num_steps + if batch_id > 0 and batch_id % log_interval == 0: + ppl = np.exp(total_loss / iters) + print("ppl ", batch_id, ppl[0], lr[0]) + + ppl = np.exp(total_loss / iters) + if epoch_id == 0 and ppl[0] > 1000: + # for bad init, after first epoch, the loss is over 1000 + # no more need to continue + return + end_time = time.time() + total_time += end_time - start_time + print("train ppl", ppl[0]) + + if epoch_id == max_epoch - 1 and args.enable_ce: + print("lstm_language_model_duration\t%s" % (total_time / max_epoch)) + print("lstm_language_model_loss\t%s" % ppl[0]) + + model_path = os.path.join("model_new/", str(epoch_id)) + if not os.path.isdir(model_path): + os.makedirs(model_path) + fluid.io.save_persistables( + executor=exe, dirname=model_path, main_program=main_program) + valid_ppl = eval(valid_data) + print("valid ppl", valid_ppl[0]) + test_ppl = eval(test_data) + print("test ppl", test_ppl[0]) + + +if __name__ == '__main__': + train() diff --git a/legacy/ssd/README.cn.md b/legacy/ssd/README.cn.md index 2e510908a43c29352be87ddc061958f568495251..f9dbde507cae09e4ae2593b25a5062da378ebc1a 100644 --- a/legacy/ssd/README.cn.md +++ b/legacy/ssd/README.cn.md @@ -86,7 +86,7 @@ SSD使用一个卷积神经网络实现“端到端”的检测:输入为原 文件共两个字段,第一个字段为图像文件的相对路径,第二个字段为对应标注文件的相对路径。 ### 预训练模型准备 -下载预训练的VGG-16模型,我们提供了一个转换好的模型,下载模型[http://paddlepaddle.bj.bcebos.com/model_zoo/detection/ssd_model/vgg_model.tar.gz](http://paddlepaddle.bj.bcebos.com/model_zoo/detection/ssd_model/vgg_model.tar.gz),并将其放置路径为```vgg/vgg_model.tar.gz```。 +下载预训练的VGG-16模型,我们提供了一个转换好的模型,下载模型[http://paddlemodels.bj.bcebos.com/v2/vgg_model.tar.gz](http://paddlemodels.bj.bcebos.com/v2/vgg_model.tar.gz),并将其放置路径为```vgg/vgg_model.tar.gz```。 ### 模型训练 直接执行```python train.py```即可进行训练。需要注意本示例仅支持CUDA GPU环境,无法在CPU上训练,主要因为使用CPU训练速度很慢,实践中一般使用GPU来处理图像任务,这里实现采用硬编码方式使用cuDNN,不提供CPU版本。```train.py```的一些关键执行逻辑: diff --git a/legacy/ssd/README.md b/legacy/ssd/README.md index 22ac492f49819763bb96ebef088760e824eba380..7ad8a6936acfbebe6c21527e104847643aa036b6 100644 --- a/legacy/ssd/README.md +++ b/legacy/ssd/README.md @@ -77,7 +77,7 @@ The first field is the relative path of the image file, and the second field is ### To Use Pre-trained Model -We also provide a pre-trained model using VGG-16 with good performance. To use the model, download the file http://paddlepaddle.bj.bcebos.com/model_zoo/detection/ssd_model/vgg_model.tar.gz, and place it as ```vgg/vgg_model.tar.gz```。 +We also provide a pre-trained model using VGG-16 with good performance. To use the model, download the file http://paddlemodels.bj.bcebos.com/v2/vgg_model.tar.gz, and place it as ```vgg/vgg_model.tar.gz```. ### Training Next, run ```python train.py``` to train the model. Note that this example only supports the CUDA GPU environment, and can not be trained using only CPU. This is mainly because the training is very slow using CPU only.