提交 f12deac8 编写于 作者: Y yangyaming

Add comments for data reader and adapt the model according to parallel

reader.
上级 ee1a4aa6
"""This model read the sample from disk. """This module contains data processing related logic.
use multiprocessing to reading samples
push samples from one block to multiprocessing queue
Todos:
1. multiprocess read block from disk
""" """
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import random import random
import Queue
import numpy as np import numpy as np
import struct import struct
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_add_delta as trans_add_delta
from multiprocessing import Manager, Process
from threading import Thread
class OneBlock(object): import time
""" struct for one block :
contain label, label desc, feature, feature_desc
class SampleInfo(object):
Attributes: """SampleInfo holds the necessary information to load an example from disk.
label(str) : label path of one block
label_desc(str) : label description path of one block Args:
feature(str) : feature path of on block feature_bin_path (str): File containing the feature data.
feature_desc(str) : feature description path of on block feature_start (int): Start position of the sample's feature data.
feature_size (int): Byte count of the sample's feature data.
feature_frame_num (int): Time length of the sample.
feature_dim (int): Feature dimension of one frame.
label_bin_path (str): File containing the label data.
label_size (int): Byte count of the sample's label data.
label_frame_num (int): Label number of the sample.
""" """
def __init__(self): def __init__(self, feature_bin_path, feature_start, feature_size,
"""the constructor.""" feature_frame_num, feature_dim, label_bin_path, label_start,
label_size, label_frame_num):
self.label = "label" self.feature_bin_path = feature_bin_path
self.label_desc = "label_desc" self.feature_start = feature_start
self.feature = "feature" self.feature_size = feature_size
self.feature_desc = "feature_desc" self.feature_frame_num = feature_frame_num
self.feature_dim = feature_dim
class DataRead(object): self.label_bin_path = label_bin_path
self.label_start = label_start
self.label_size = label_size
self.label_frame_num = label_frame_num
class SampleInfoBucket(object):
"""SampleInfoBucket contains paths of several description files. Feature
description file contains necessary information to access samples' feature
data and label description file contains necessary information to
access samples' label data. SampleInfoBucket is the minimum unit to do
shuffle.
Args:
feature_bin_paths (list|tuple): Files containing the binary feature
data.
feature_desc_paths (list|tuple): Files containing the description of
samples' feature data.
label_bin_paths (list|tuple): Files containing the binary label data.
label_desc_paths (list|tuple): Files containing the description of
samples' label data.
""" """
Attributes:
_lblock(obj:`OneBlock`) : the list of OneBlock def __init__(self, feature_bin_paths, feature_desc_paths, label_bin_paths,
_ndrop_sentence_len(int): dropout the sentence which's frame_num large than _ndrop_sentence_len label_desc_paths):
_que_sample(obj:`Queue`): sample buffer block_num = len(label_bin_paths)
_nframe_dim(int): the batch sample frame_dim(todo remove) assert len(label_desc_paths) == block_num
_nstart_block_idx(int): the start block id assert len(feature_bin_paths) == block_num
_nload_block_num(int): the block num assert len(feature_desc_paths) == block_num
self._block_num = block_num
self._feature_bin_paths = feature_bin_paths
self._feature_desc_paths = feature_desc_paths
self._label_bin_paths = label_bin_paths
self._label_desc_paths = label_desc_paths
def generate_sample_info_list(self):
sample_info_list = []
for block_idx in xrange(self._block_num):
label_bin_path = self._label_bin_paths[block_idx]
label_desc_path = self._label_desc_paths[block_idx]
feature_bin_path = self._feature_bin_paths[block_idx]
feature_desc_path = self._feature_desc_paths[block_idx]
label_desc_lines = open(label_desc_path).readlines()
feature_desc_lines = open(feature_desc_path).readlines()
sample_num = int(label_desc_lines[0].split()[1])
assert sample_num == int(feature_desc_lines[0].split()[1])
for i in xrange(sample_num):
feature_desc_split = feature_desc_lines[i + 1].split()
feature_start = int(feature_desc_split[2])
feature_size = int(feature_desc_split[3])
feature_frame_num = int(feature_desc_split[4])
feature_dim = int(feature_desc_split[5])
label_desc_split = label_desc_lines[i + 1].split()
label_start = int(label_desc_split[2])
label_size = int(label_desc_split[3])
label_frame_num = int(label_desc_split[4])
sample_info_list.append(
SampleInfo(feature_bin_path, feature_start, feature_size,
feature_frame_num, feature_dim, label_bin_path,
label_start, label_size, label_frame_num))
return sample_info_list
class EpochEndSignal():
pass
class DataReader(object):
"""DataReader provides basic audio sample preprocessing pipeline including
I/O and augmentation transformation.
Args:
feature_file_list (str): File containing feature data related files.
label_file_list (str): File containing label data related files.
frame_dim (int): The final feature dimension of one frame after all
augmentation applied.
drop_sentence_len (int): Lower threshold bound to filter samples having
long sentence.
process_num (int): Number of processes for processing data.
sample_buffer_size (int): Buffer size to indicate the maximum samples
cached.
sample_info_buffer_size (int): Buffer size to indicate the maximum
sample information cached.
shuffle_block_num (int): Block number indicating the minimum unit to do
shuffle.
random_seed (int): Random seed.
""" """
def __init__(self, sfeature_lst, slabel_lst, ndrop_sentence_len=512): def __init__(
""" self,
Args: feature_file_list,
sfeature_lst(str):feature lst path label_file_list,
slabel_lst(str):label lst path frame_dim=120 * 11, # @TODO augmentor is responsible for the value
Returns: drop_sentence_len=512,
None drop_frame_len=256,
""" process_num=10,
self._lblock = [] sample_buffer_size=1024,
self._ndrop_sentence_len = ndrop_sentence_len sample_info_buffer_size=10000,
self._que_sample = Queue.Queue() shuffle_block_num=1,
self._nframe_dim = 120 * 11 random_seed=0):
self._nstart_block_idx = 0 self._feature_file_list = feature_file_list
self._nload_block_num = 1 self._label_file_list = label_file_list
self._ndrop_frame_len = 256 self._drop_sentence_len = drop_sentence_len
self._frame_dim = frame_dim
self._load_list(sfeature_lst, slabel_lst) self._drop_frame_len = drop_frame_len
self._shuffle_block_num = shuffle_block_num
def _load_list(self, sfeature_lst, slabel_lst): self._block_info_list = None
""" load list and shuffle self._rng = random.Random(random_seed)
Args: self._bucket_list = None
sfeature_lst(str):feature lst path self.generate_bucket_list(True)
slabel_lst(str):label lst path self._order_id = 0
Returns: self._manager = Manager()
None self._sample_buffer_size = sample_buffer_size
""" self._sample_info_buffer_size = sample_info_buffer_size
lfeature = open(sfeature_lst).readlines() self._process_num = process_num
llabel = open(slabel_lst).readlines()
assert len(llabel) == len(lfeature) def generate_bucket_list(self, is_shuffle):
for i in range(0, len(lfeature), 2): if self._block_info_list is None:
one_block = OneBlock() block_feature_info_lines = open(self._feature_file_list).readlines()
block_label_info_lines = open(self._label_file_list).readlines()
one_block.label = llabel[i] assert len(block_feature_info_lines) == len(block_label_info_lines)
one_block.label_desc = llabel[i + 1] self._block_info_list = []
one_block.feature = lfeature[i] for i in xrange(0, len(block_feature_info_lines), 2):
one_block.feature_desc = lfeature[i + 1] block_info = (block_feature_info_lines[i],
self._lblock.append(one_block) block_feature_info_lines[i + 1],
block_label_info_lines[i],
random.shuffle(self._lblock) block_label_info_lines[i + 1])
self._block_info_list.append(
def _load_one_block(self, lsample, id): map(lambda line: line.strip(), block_info))
"""read one block by id and push load sample in list lsample
Args: if is_shuffle:
lsample(list): return sample list self._rng.shuffle(self._block_info_list)
id(int): block id
Returns: self._bucket_list = []
None for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
""" bucket_block_info = self._block_info_list[i:i +
if id >= len(self._lblock): self._shuffle_block_num]
return self._bucket_list.append(
SampleInfoBucket(
slabel_path = self._lblock[id].label.strip() map(lambda info: info[0], bucket_block_info),
slabel_desc_path = self._lblock[id].label_desc.strip() map(lambda info: info[1], bucket_block_info),
sfeature_path = self._lblock[id].feature.strip() map(lambda info: info[2], bucket_block_info),
sfeature_desc_path = self._lblock[id].feature_desc.strip() map(lambda info: info[3], bucket_block_info)))
llabel_line = open(slabel_desc_path).readlines() # @TODO make this configurable
lfeature_line = open(sfeature_desc_path).readlines() def set_transformers(self, transformers):
self._transformers = transformers
file_lable_bin = open(slabel_path, "r")
file_feature_bin = open(sfeature_path, "r") def _sample_generator(self):
sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
sample_num = int(llabel_line[0].split()[1]) sample_queue = self._manager.Queue(self._sample_buffer_size)
assert sample_num == int(lfeature_line[0].split()[1]) self._order_id = 0
llabel_line = llabel_line[1:] def ordered_feeding_worker(sample_info_queue):
lfeature_line = lfeature_line[1:] for sample_info_bucket in self._bucket_list:
sample_info_list = sample_info_bucket.generate_sample_info_list(
for i in range(sample_num): )
# read label self._rng.shuffle(sample_info_list) # do shuffle here
llabel_split = llabel_line[i].split() for sample_info in sample_info_list:
nlabel_start = int(llabel_split[2]) sample_info_queue.put((sample_info, self._order_id))
nlabel_size = int(llabel_split[3]) self._order_id += 1
nlabel_frame_num = int(llabel_split[4])
for i in xrange(self._process_num):
file_lable_bin.seek(nlabel_start, 0) sample_info_queue.put(EpochEndSignal())
label_bytes = file_lable_bin.read(nlabel_size)
assert nlabel_frame_num * 4 == len(label_bytes) feeding_thread = Thread(
label_array = struct.unpack('I' * nlabel_frame_num, label_bytes) target=ordered_feeding_worker, args=(sample_info_queue, ))
label_data = np.array(label_array, dtype="int64") feeding_thread.daemon = True
label_data = label_data.reshape((nlabel_frame_num, 1)) feeding_thread.start()
# read feature def ordered_processing_worker(sample_info_queue, sample_queue,
lfeature_split = lfeature_line[i].split() out_order):
nfeature_start = int(lfeature_split[2]) def read_bytes(fpath, start, size):
nfeature_size = int(lfeature_split[3]) f = open(fpath, 'r')
nfeature_frame_num = int(lfeature_split[4]) f.seek(start, 0)
nfeature_frame_dim = int(lfeature_split[5]) binary_bytes = f.read(size)
f.close()
file_feature_bin.seek(nfeature_start, 0) return binary_bytes
feature_bytes = file_feature_bin.read(nfeature_size)
assert nfeature_frame_num * nfeature_frame_dim * 4 == len( ins = sample_info_queue.get()
feature_bytes)
feature_array = struct.unpack('f' * nfeature_frame_num * while not isinstance(ins, EpochEndSignal):
nfeature_frame_dim, feature_bytes) sample_info, order_id = ins
feature_data = np.array(feature_array, dtype="float32")
feature_data = feature_data.reshape( feature_bytes = read_bytes(sample_info.feature_bin_path,
(nfeature_frame_num, nfeature_frame_dim)) sample_info.feature_start,
sample_info.feature_size)
#drop long sentence
if self._ndrop_frame_len < feature_data.shape[0]: label_bytes = read_bytes(sample_info.label_bin_path,
sample_info.label_start,
sample_info.label_size)
assert sample_info.label_frame_num * 4 == len(label_bytes)
label_array = struct.unpack('I' * sample_info.label_frame_num,
label_bytes)
label_data = np.array(
label_array, dtype='int64').reshape(
(sample_info.label_frame_num, 1))
feature_frame_num = sample_info.feature_frame_num
feature_dim = sample_info.feature_dim
assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
feature_array = struct.unpack('f' * feature_frame_num *
feature_dim, feature_bytes)
feature_data = np.array(
feature_array, dtype='float32').reshape((
sample_info.feature_frame_num, sample_info.feature_dim))
sample_data = (feature_data, label_data)
for transformer in self._transformers:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data = transformer.perform_trans(sample_data)
while order_id != out_order[0]:
time.sleep(0.001)
# drop long sentence
if self._drop_sentence_len >= sample_data[0].shape[0]:
sample_queue.put(sample_data)
out_order[0] += 1
ins = sample_info_queue.get()
sample_queue.put(EpochEndSignal())
out_order = self._manager.list([0])
args = (sample_info_queue, sample_queue, out_order)
workers = [
Process(
target=ordered_processing_worker, args=args)
for _ in xrange(self._process_num)
]
for w in workers:
w.daemon = True
w.start()
finished_process_num = 0
while finished_process_num < self._process_num:
sample = sample_queue.get()
if isinstance(sample, EpochEndSignal):
finished_process_num += 1
continue continue
lsample.append((feature_data, label_data)) yield sample
def get_one_batch(self, nbatch_size): feeding_thread.join()
"""construct one batch(feature, label), batch size is nbatch_size for w in workers:
Args: w.join()
nbatch_size(int): batch size
Returns: def batch_iterator(self, batch_size, minimum_batch_size):
None batch_samples = []
"""
if self._que_sample.empty():
lsample = self._load_block(
range(self._nstart_block_idx, self._nstart_block_idx +
self._nload_block_num, 1))
self._move_sample(lsample)
self._nstart_block_idx += self._nload_block_num
if self._que_sample.empty():
self._nstart_block_idx = 0
return None
#cal all frame num
ncur_len = 0
lod = [0] lod = [0]
samples = [] # check whether need parallel here
bat_feature = np.zeros((nbatch_size, self._nframe_dim)) for sample in self._sample_generator():
for i in range(nbatch_size): batch_samples.append(sample)
# empty clear zero lod.append(lod[-1] + sample[0].shape[0])
if self._que_sample.empty(): if len(batch_samples) == batch_size:
self._nstart_block_idx = 0 batch_feature = np.zeros(
# copy (lod[-1], self._frame_dim), dtype="float32")
else: batch_label = np.zeros((lod[-1], 1), dtype="int64")
(one_feature, one_label) = self._que_sample.get() start = 0
samples.append((one_feature, one_label)) for sample in batch_samples:
ncur_len += one_feature.shape[0] frame_num = sample[0].shape[0]
lod.append(ncur_len) batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
bat_feature = np.zeros((ncur_len, self._nframe_dim), dtype="float32") start += frame_num
bat_label = np.zeros((ncur_len, 1), dtype="int64") yield (batch_feature, batch_label, lod)
ncur_len = 0 batch_samples = []
for sample in samples: lod = [0]
one_feature = sample[0]
one_label = sample[1] if len(batch_samples) >= minimum_batch_size:
nframe_num = one_feature.shape[0] batch_feature = np.zeros(
nstart = ncur_len (lod[-1], self._frame_dim), dtype="float32")
nend = ncur_len + nframe_num batch_label = np.zeros((lod[-1], 1), dtype="int64")
bat_feature[nstart:nend, :] = one_feature start = 0
bat_label[nstart:nend, :] = one_label for sample in batch_samples:
ncur_len += nframe_num frame_num = sample[0].shape[0]
return (bat_feature, bat_label, lod) batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
def set_trans(self, ltrans): start += frame_num
""" set transform list yield (batch_feature, batch_label, lod)
Args:
ltrans(list): data tranform list
Returns:
None
"""
self._ltrans = ltrans
def _load_block(self, lblock_id):
"""read blocks
"""
lsample = []
for id in lblock_id:
self._load_one_block(lsample, id)
# transform sample
for (nidx, sample) in enumerate(lsample):
for trans in self._ltrans:
sample = trans.perform_trans(sample)
lsample[nidx] = sample
return lsample
def load_block(self, lblock_id):
"""read blocks
Args:
lblock_id(list):the block list id
Returns:
None
"""
lsample = []
for id in lblock_id:
self._load_one_block(lsample, id)
# transform sample
for (nidx, sample) in enumerate(lsample):
for trans in self._ltrans:
sample = trans.perform_trans(sample)
lsample[nidx] = sample
return lsample
def _move_sample(self, lsample):
"""move sample to queue
Args:
lsample(list): one block of samples read from disk
Returns:
None
"""
# random
random.shuffle(lsample)
for sample in lsample:
self._que_sample.put(sample)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
import struct
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
from multiprocessing import Manager, Process
from threading import Thread
import time
class SampleInfo(object):
def __init__(self, feature_bin_path, feature_start, feature_size,
feature_frame_num, feature_dim, label_bin_path, label_start,
label_size, label_frame_num):
self.feature_bin_path = feature_bin_path
self.feature_start = feature_start
self.feature_size = feature_size
self.feature_frame_num = feature_frame_num
self.feature_dim = feature_dim
self.label_bin_path = label_bin_path
self.label_start = label_start
self.label_size = label_size
self.label_frame_num = label_frame_num
class SampleInfoBucket(object):
def __init__(self, feature_bin_paths, feature_desc_paths, label_bin_paths,
label_desc_paths):
block_num = len(label_bin_paths)
assert len(label_desc_paths) == block_num
assert len(feature_bin_paths) == block_num
assert len(feature_desc_paths) == block_num
self._block_num = block_num
self._feature_bin_paths = feature_bin_paths
self._feature_desc_paths = feature_desc_paths
self._label_bin_paths = label_bin_paths
self._label_desc_paths = label_desc_paths
def generate_sample_info_list(self):
sample_info_list = []
for block_idx in xrange(self._block_num):
label_bin_path = self._label_bin_paths[block_idx]
label_desc_path = self._label_desc_paths[block_idx]
feature_bin_path = self._feature_bin_paths[block_idx]
feature_desc_path = self._feature_desc_paths[block_idx]
label_desc_lines = open(label_desc_path).readlines()
feature_desc_lines = open(feature_desc_path).readlines()
sample_num = int(label_desc_lines[0].split()[1])
assert sample_num == int(feature_desc_lines[0].split()[1])
for i in xrange(sample_num):
feature_desc_split = feature_desc_lines[i + 1].split()
feature_start = int(feature_desc_split[2])
feature_size = int(feature_desc_split[3])
feature_frame_num = int(feature_desc_split[4])
feature_dim = int(feature_desc_split[5])
label_desc_split = label_desc_lines[i + 1].split()
label_start = int(label_desc_split[2])
label_size = int(label_desc_split[3])
label_frame_num = int(label_desc_split[4])
sample_info_list.append(
SampleInfo(feature_bin_path, feature_start, feature_size,
feature_frame_num, feature_dim, label_bin_path,
label_start, label_size, label_frame_num))
return sample_info_list
class EpochEndSignal():
pass
class DataReader(object):
def __init__(self,
feature_file_list,
label_file_list,
frame_dim=120 * 11,
drop_sentence_len=512,
drop_frame_len=256,
parallel_num=10,
sample_buffer_size=1024,
sample_info_buffer_size=10000,
shuffle_block_num=1,
random_seed=0):
self._feature_file_list = feature_file_list
self._label_file_list = label_file_list
self._drop_sentence_len = drop_sentence_len
self._frame_dim = frame_dim
self._drop_frame_len = drop_frame_len
self._shuffle_block_num = shuffle_block_num
self._block_info_list = None
self._rng = random.Random(random_seed)
self._bucket_list = None
self.generate_bucket_list(True)
self._order_id = 0
self._manager = Manager()
self._sample_buffer_size = sample_buffer_size
self._sample_info_buffer_size = sample_info_buffer_size
self._process_num = parallel_num
def generate_bucket_list(self, is_shuffle):
if self._block_info_list is None:
block_feature_info_lines = open(self._feature_file_list).readlines()
block_label_info_lines = open(self._label_file_list).readlines()
assert len(block_feature_info_lines) == len(block_label_info_lines)
self._block_info_list = []
for i in xrange(0, len(block_feature_info_lines), 2):
block_info = (block_feature_info_lines[i],
block_feature_info_lines[i + 1],
block_label_info_lines[i],
block_label_info_lines[i + 1])
self._block_info_list.append(
map(lambda line: line.strip(), block_info))
if is_shuffle:
self._rng.shuffle(self._block_info_list)
self._bucket_list = []
for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
bucket_block_info = self._block_info_list[i:i +
self._shuffle_block_num]
self._bucket_list.append(
SampleInfoBucket(
map(lambda info: info[0], bucket_block_info),
map(lambda info: info[1], bucket_block_info),
map(lambda info: info[2], bucket_block_info),
map(lambda info: info[3], bucket_block_info)))
# @TODO make this configurable
def set_transformers(self, transformers):
self._transformers = transformers
def _sample_generator(self):
sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
sample_queue = self._manager.Queue(self._sample_buffer_size)
self._order_id = 0
def ordered_feeding_worker(sample_info_queue):
for sample_info_bucket in self._bucket_list:
sample_info_list = sample_info_bucket.generate_sample_info_list(
)
self._rng.shuffle(sample_info_list) # do shuffle here
for sample_info in sample_info_list:
sample_info_queue.put((sample_info, self._order_id))
self._order_id += 1
for i in xrange(self._process_num):
sample_info_queue.put(EpochEndSignal())
feeding_thread = Thread(
target=ordered_feeding_worker, args=(sample_info_queue, ))
feeding_thread.daemon = True
feeding_thread.start()
def ordered_processing_worker(sample_info_queue, sample_queue,
out_order):
def read_bytes(fpath, start, size):
f = open(fpath, 'r')
f.seek(start, 0)
binary_bytes = f.read(size)
f.close()
return binary_bytes
ins = sample_info_queue.get()
while not isinstance(ins, EpochEndSignal):
sample_info, order_id = ins
feature_bytes = read_bytes(sample_info.feature_bin_path,
sample_info.feature_start,
sample_info.feature_size)
label_bytes = read_bytes(sample_info.label_bin_path,
sample_info.label_start,
sample_info.label_size)
assert sample_info.label_frame_num * 4 == len(label_bytes)
label_array = struct.unpack('I' * sample_info.label_frame_num,
label_bytes)
label_data = np.array(
label_array, dtype='int64').reshape(
(sample_info.label_frame_num, 1))
feature_frame_num = sample_info.feature_frame_num
feature_dim = sample_info.feature_dim
assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
feature_array = struct.unpack('f' * feature_frame_num *
feature_dim, feature_bytes)
feature_data = np.array(
feature_array, dtype='float32').reshape((
sample_info.feature_frame_num, sample_info.feature_dim))
sample_data = (feature_data, label_data)
for transformer in self._transformers:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data = transformer.perform_trans(sample_data)
while order_id != out_order[0]:
time.sleep(0.001)
# drop long sentence
if self._drop_sentence_len >= sample_data[0].shape[0]:
sample_queue.put(sample_data)
out_order[0] += 1
ins = sample_info_queue.get()
sample_queue.put(EpochEndSignal())
out_order = self._manager.list([0])
args = (sample_info_queue, sample_queue, out_order)
workers = [
Process(
target=ordered_processing_worker, args=args)
for _ in xrange(self._process_num)
]
for w in workers:
w.daemon = True
w.start()
finished_process_num = 0
while finished_process_num < self._process_num:
sample = sample_queue.get()
if isinstance(sample, EpochEndSignal):
finished_process_num += 1
continue
yield sample
feeding_thread.join()
for w in workers:
w.join()
def batch_iterator(self, batch_size, minimum_batch_size):
batch_samples = []
lod = [0]
# check whether need parallel here
for sample in self._sample_generator():
batch_samples.append(sample)
lod.append(lod[-1] + sample[0].shape[0])
if len(batch_samples) == batch_size:
batch_feature = np.zeros(
(lod[-1], self._frame_dim), dtype="float32")
batch_label = np.zeros((lod[-1], 1), dtype="int64")
start = 0
for sample in batch_samples:
frame_num = sample[0].shape[0]
batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
start += frame_num
yield (batch_feature, batch_label, lod)
batch_samples = []
lod = [0]
if len(batch_samples) >= minimum_batch_size:
batch_feature = np.zeros(
(lod[-1], self._frame_dim), dtype="float32")
batch_label = np.zeros((lod[-1], 1), dtype="int64")
start = 0
for sample in batch_samples:
frame_num = sample[0].shape[0]
batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
start += frame_num
yield (batch_feature, batch_label, lod)
...@@ -9,9 +9,9 @@ import time ...@@ -9,9 +9,9 @@ import time
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import paddle.v2.fluid.profiler as profiler import paddle.v2.fluid.profiler as profiler
import data_utils.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.trans_splice as trans_splice import data_utils.augmentor.trans_splice as trans_splice
import data_utils.data_reader as reader import data_utils.data_reader as reader
...@@ -22,6 +22,12 @@ def parse_args(): ...@@ -22,6 +22,12 @@ def parse_args():
type=int, type=int,
default=32, default=32,
help='The sequence number of a batch data. (default: %(default)d)') help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--minimum_batch_size',
type=int,
default=32,
help='The minimum sequence number of a batch data. (default: %(default)d)'
)
parser.add_argument( parser.add_argument(
'--stacked_num', '--stacked_num',
type=int, type=int,
...@@ -160,14 +166,15 @@ def train(args): ...@@ -160,14 +166,15 @@ def train(args):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
# @TODO datareader should take the responsibility (parsing from config file)
ltrans = [ ltrans = [
trans_add_delta.TransAddDelta(2, 2), trans_add_delta.TransAddDelta(2, 2),
trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var), trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var),
trans_splice.TransSplice() trans_splice.TransSplice()
] ]
data_reader = reader.DataRead(args.feature_lst, args.label_lst) data_reader = reader.DataReader(args.feature_lst, args.label_lst)
data_reader.set_trans(ltrans) data_reader.set_transformers(ltrans)
res_feature = fluid.LoDTensor() res_feature = fluid.LoDTensor()
res_label = fluid.LoDTensor() res_label = fluid.LoDTensor()
...@@ -175,22 +182,15 @@ def train(args): ...@@ -175,22 +182,15 @@ def train(args):
pass_start_time = time.time() pass_start_time = time.time()
words_seen = 0 words_seen = 0
accuracy.reset(exe) accuracy.reset(exe)
batch_id = 0 for batch_id, batch_data in enumerate(
while True: data_reader.batch_iterator(args.batch_size,
# load_data args.minimum_batch_size)):
one_batch = data_reader.get_one_batch(args.batch_size) (bat_feature, bat_label, lod) = batch_data
if one_batch == None:
break
(bat_feature, bat_label, lod) = one_batch
res_feature.set(bat_feature, place) res_feature.set(bat_feature, place)
res_feature.set_lod([lod]) res_feature.set_lod([lod])
res_label.set(bat_label, place) res_label.set(bat_label, place)
res_label.set_lod([lod]) res_label.set_lod([lod])
batch_id += 1
words_seen += lod[-1] words_seen += lod[-1]
loss, acc = exe.run( loss, acc = exe.run(
fluid.default_main_program(), fluid.default_main_program(),
feed={"feature": res_feature, feed={"feature": res_feature,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册