Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
edc6b362
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
edc6b362
编写于
8月 08, 2018
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
kpi fix
上级
f35daf3e
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
35 addition
and
26 deletion
+35
-26
fluid/object_detection/.run_ce.sh
fluid/object_detection/.run_ce.sh
+11
-3
fluid/object_detection/_ce.py
fluid/object_detection/_ce.py
+5
-5
fluid/object_detection/train.py
fluid/object_detection/train.py
+19
-18
未找到文件。
fluid/object_detection/.run_ce.sh
浏览文件 @
edc6b362
###!/bin/bash
####This file is only used for continuous evaluation.
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
cudaid
=
${
object_detection_cudaid
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
if
[
!
-d
"/root/.cache/paddle/dataset/pascalvoc"
]
;
then
mkdir
-p
/root/.cache/paddle/dataset/pascalvoc
./data/pascalvoc/download.sh
cp
-r
./data/pascalvoc/. /home/.cache/paddle/dataset/pascalvoc
fi
FLAGS_benchmark
=
true
python train.py
--for_model_ce
=
True
--batch_size
=
64
--num_passes
=
2
--data_dir
=
/root/.cache/paddle/dataset/pascalvoc/ | python _ce.py
cudaid
=
${
object_detection_cudaid
:
=0
}
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
--enable_ce
=
True
--batch_size
=
64
--num_passes
=
2
--data_dir
=
/root/.cache/paddle/dataset/pascalvoc/ | python _ce.py
cudaid
=
${
object_detection_cudaid
:
=0,1,2,3
}
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
--enable_ce
=
True
--batch_size
=
64
--num_passes
=
2
--data_dir
=
/root/.cache/paddle/dataset/pascalvoc/ | python _ce.py
fluid/object_detection/_ce.py
浏览文件 @
edc6b362
...
...
@@ -8,15 +8,15 @@ from kpi import CostKpi, DurationKpi, AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
,
actived
=
True
)
test_acc_kpi
=
AccKpi
(
'test_acc'
,
0.0
05
,
actived
=
True
)
train_
duration_kpi
=
DurationKpi
(
'train_duration'
,
0.06
,
actived
=
True
)
train_
acc_kpi
=
AccKpi
(
'train_acc'
,
0.005
,
actived
=
True
)
test_acc_kpi
=
AccKpi
(
'test_acc'
,
0.0
1
,
actived
=
True
)
train_
speed_kpi
=
AccKpi
(
'train_speed'
,
0.2
,
actived
=
True
)
train_
speed_card4_kpi
=
AccKpi
(
'train_speed_card4'
,
0.2
,
actived
=
True
)
tracking_kpis
=
[
train_acc_kpi
,
train_cost_kpi
,
test_acc_kpi
,
train_duration_kpi
,
train_speed_kpi
,
train_speed_card4_kpi
,
]
...
...
fluid/object_detection/train.py
浏览文件 @
edc6b362
...
...
@@ -11,11 +11,6 @@ import reader
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
SEED
=
90
# random seed must set before configuring the network.
fluid
.
default_startup_program
().
random_seed
=
SEED
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
...
...
@@ -38,7 +33,7 @@ add_arg('mean_value_G', float, 127.5, "Mean value for G channel which will
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"Mean value for R channel which will be subtracted."
)
#103.94
add_arg
(
'is_toy'
,
int
,
0
,
"Toy for quick debug, 0 means using all data, while n means using only n sample."
)
add_arg
(
'data_dir'
,
str
,
'data/pascalvoc'
,
"data directory"
)
add_arg
(
'
for_model_ce'
,
bool
,
False
,
"U
se CE to evaluate the model"
)
add_arg
(
'
enable_ce'
,
bool
,
False
,
"Whether u
se CE to evaluate the model"
)
#yapf: enable
...
...
@@ -51,6 +46,9 @@ def train(args,
num_passes
,
model_save_dir
,
pretrained_model
=
None
):
if
args
.
enable_ce
:
fluid
.
framework
.
default_startup_program
().
random_seed
=
111
image_shape
=
[
3
,
data_args
.
resize_h
,
data_args
.
resize_w
]
if
'coco'
in
data_args
.
dataset
:
num_classes
=
91
...
...
@@ -124,8 +122,12 @@ def train(args,
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_gpu
,
loss_name
=
loss
.
name
)
if
not
args
.
enable_ce
:
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
else
:
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
,
False
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
reader
.
test
(
data_args
,
val_file_list
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
...
...
@@ -143,17 +145,20 @@ def train(args,
def
test
(
pass_id
,
best_map
):
_
,
accum_map
=
map_eval
.
get_map_var
()
map_eval
.
reset
(
exe
)
every_pass_map
=
[]
for
batch_id
,
data
in
enumerate
(
test_reader
()):
test_map
,
=
exe
.
run
(
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
accum_map
])
if
batch_id
%
20
==
0
:
every_pass_map
.
append
(
test_map
)
print
(
"Batch {0}, map {1}"
.
format
(
batch_id
,
test_map
))
mean_map
=
np
.
mean
(
every_pass_map
)
if
test_map
[
0
]
>
best_map
:
best_map
=
test_map
[
0
]
save_model
(
'best_model'
)
print
(
"Pass {0}, test map {1}"
.
format
(
pass_id
,
test_map
))
return
best_map
return
best_map
,
mean_map
total_time
=
0.0
for
pass_id
in
range
(
num_passes
):
...
...
@@ -183,28 +188,24 @@ def train(args,
pass_id
,
batch_id
,
loss_v
,
start_time
-
prev_start_time
))
end_time
=
time
.
time
()
if
args
.
for_model_ce
:
gpu_num
=
get_cards
()
best_map
,
mean_map
=
test
(
pass_id
,
best_map
)
if
args
.
enable_ce
and
pass_id
==
1
:
total_time
+=
end_time
-
start_time
train_avg_loss
=
np
.
mean
(
every_pass_loss
)
if
gpu
_num
==
1
:
if
devices
_num
==
1
:
print
(
"kpis train_cost %s"
%
train_avg_loss
)
print
(
"kpis test_acc %s"
%
mean_map
)
print
(
"kpis train_speed %s"
%
(
total_time
/
epoch_idx
))
else
:
print
(
"kpis train_cost_card%s %s"
%
(
gpu_num
,
train_avg_loss
))
print
(
"kpis test_acc_card%s %s"
%
(
gpu_num
,
mean_map
))
print
(
"kpis train_speed_card%s %f"
%
(
gpu_num
,
total_time
/
epoch_idx
))
best_map
=
test
(
pass_id
,
best_map
)
if
pass_id
%
10
==
0
or
pass_id
==
num_passes
-
1
:
save_model
(
str
(
pass_id
))
print
(
"Best test map {0}"
.
format
(
best_map
))
def
get_cards
():
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
return
num
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录