提交 ed23e210 编写于 作者: Y Yibing Liu

improve external scorer

上级 2922a455
...@@ -6,6 +6,7 @@ from itertools import groupby ...@@ -6,6 +6,7 @@ from itertools import groupby
import numpy as np import numpy as np
import copy import copy
import kenlm import kenlm
import os
def ctc_best_path_decode(probs_seq, vocabulary): def ctc_best_path_decode(probs_seq, vocabulary):
...@@ -54,19 +55,16 @@ class Scorer(object): ...@@ -54,19 +55,16 @@ class Scorer(object):
def __init__(self, alpha, beta, model_path): def __init__(self, alpha, beta, model_path):
self._alpha = alpha self._alpha = alpha
self._beta = beta self._beta = beta
if not os.path.isfile(model_path):
raise IOError("Invaid language model path: %s" % model_path)
self._language_model = kenlm.LanguageModel(model_path) self._language_model = kenlm.LanguageModel(model_path)
# language model scoring # n-gram language model scoring
def language_model_score(self, sentence, bos=True, eos=False): def language_model_score(self, sentence):
words = sentence.strip().split(' ') #log prob of last word
length = len(words) log_cond_prob = list(
if length == 1: self._language_model.full_scores(sentence, eos=False))[-1][0]
log_prob = self._language_model.score(sentence, bos, eos) return np.power(10, log_cond_prob)
else:
prefix_sent = ' '.join(words[0:length - 1])
log_prob = self._language_model.score(sentence, bos, eos) \
- self._language_model.score(prefix_sent, bos, eos)
return np.power(10, log_prob)
# word insertion term # word insertion term
def word_count(self, sentence): def word_count(self, sentence):
...@@ -74,8 +72,8 @@ class Scorer(object): ...@@ -74,8 +72,8 @@ class Scorer(object):
return len(words) return len(words)
# execute evaluation # execute evaluation
def evaluate(self, sentence, bos=True, eos=False): def evaluate(self, sentence):
lm = self.language_model_score(sentence, bos, eos) lm = self.language_model_score(sentence)
word_cnt = self.word_count(sentence) word_cnt = self.word_count(sentence)
score = np.power(lm, self._alpha) \ score = np.power(lm, self._alpha) \
* np.power(word_cnt, self._beta) * np.power(word_cnt, self._beta)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册