diff --git a/fluid/neural_machine_translation/transformer/config.py b/fluid/neural_machine_translation/transformer/config.py index 1bf3f8d81f14528cf7e8e9feb8db681cf3ec100a..b91a8672629e76557a005897f5fe044074633028 100644 --- a/fluid/neural_machine_translation/transformer/config.py +++ b/fluid/neural_machine_translation/transformer/config.py @@ -22,8 +22,7 @@ class TrainTaskConfig(object): class InferTaskConfig(object): use_gpu = False # the number of examples in one run for sequence generation. - # currently the batch size can only be set to 1. - batch_size = 1 + batch_size = 10 # the parameters for beam search. beam_size = 5 diff --git a/fluid/neural_machine_translation/transformer/infer.py b/fluid/neural_machine_translation/transformer/infer.py index f24b7f6e8942b988874c2c4245ebd4676f186045..5d572c566cb67e0035ad3d2271706dea8d3f1d83 100644 --- a/fluid/neural_machine_translation/transformer/infer.py +++ b/fluid/neural_machine_translation/transformer/infer.py @@ -84,8 +84,11 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names, [-1e9]).astype("float32") # This is used to remove attention on the paddings of source sequences. trg_src_attn_bias = np.tile( - src_slf_attn_bias[:, :, ::src_max_length, :], - [beam_size, 1, trg_max_len, 1]) + src_slf_attn_bias[:, :, ::src_max_length, :][:, np.newaxis], + [1, beam_size, 1, trg_max_len, 1]).reshape([ + -1, src_slf_attn_bias.shape[1], trg_max_len, + src_slf_attn_bias.shape[-1] + ]) trg_data_shape = np.array( [batch_size * beam_size, trg_max_len, d_model], dtype="int32") enc_output = np.tile(