“d0af3f64a612e4b87b237a0c6f2863b25c353e50”上不存在“docs-en/07-develop/_sub_cs.mdx”
未验证 提交 eb7eb9cd 编写于 作者: L littletomatodonkey 提交者: GitHub

remove unused code in ml (#4781)

上级 a7fb45f6
...@@ -110,8 +110,7 @@ def build_program(is_train, main_prog, startup_prog, args): ...@@ -110,8 +110,7 @@ def build_program(is_train, main_prog, startup_prog, args):
queue_capacity = 64 queue_capacity = 64
image = fluid.data( image = fluid.data(
name='image', shape=[None] + image_shape, dtype='float32') name='image', shape=[None] + image_shape, dtype='float32')
label = fluid.data( label = fluid.data(name='label', shape=[None, 1], dtype='int64')
name='label', shape=[None, 1], dtype='int64')
loader = fluid.io.DataLoader.from_generator( loader = fluid.io.DataLoader.from_generator(
feed_list=[image, label], feed_list=[image, label],
capacity=queue_capacity, capacity=queue_capacity,
...@@ -187,17 +186,12 @@ def train_async(args): ...@@ -187,17 +186,12 @@ def train_async(args):
exe.run(startup_prog) exe.run(startup_prog)
logging.debug('after run startup program')
if checkpoint is not None: if checkpoint is not None:
fluid.load(program=train_prog, model_path=checkpoint, executor=exe) fluid.load(program=train_prog, model_path=checkpoint, executor=exe)
if pretrained_model: if pretrained_model:
fluid.load(
def if_exist(var): program=train_prog, model_path=pretrained_model, executor=exe)
return os.path.exists(os.path.join(pretrained_model, var.name))
fluid.load(program=train_prog, model_path=pretrained_model, executor=exe)
if args.use_gpu: if args.use_gpu:
devicenum = get_gpu_num() devicenum = get_gpu_num()
...@@ -230,8 +224,7 @@ def train_async(args): ...@@ -230,8 +224,7 @@ def train_async(args):
while iter_no <= args.total_iter_num: while iter_no <= args.total_iter_num:
for train_batch in train_loader(): for train_batch in train_loader():
t1 = time.time() t1 = time.time()
lr, loss, acc1, acc5 = train_exe.run( lr, loss, acc1, acc5 = train_exe.run(feed=train_batch,
feed=train_batch,
fetch_list=train_fetch_list) fetch_list=train_fetch_list)
t2 = time.time() t2 = time.time()
period = t2 - t1 period = t2 - t1
......
...@@ -117,8 +117,7 @@ def build_program(is_train, main_prog, startup_prog, args): ...@@ -117,8 +117,7 @@ def build_program(is_train, main_prog, startup_prog, args):
queue_capacity = 64 queue_capacity = 64
image = fluid.data( image = fluid.data(
name='image', shape=[None] + image_shape, dtype='float32') name='image', shape=[None] + image_shape, dtype='float32')
label = fluid.data( label = fluid.data(name='label', shape=[None, 1], dtype='int64')
name='label', shape=[None, 1], dtype='int64')
loader = fluid.io.DataLoader.from_generator( loader = fluid.io.DataLoader.from_generator(
feed_list=[image, label], feed_list=[image, label],
capacity=queue_capacity, capacity=queue_capacity,
...@@ -185,18 +184,12 @@ def train_async(args): ...@@ -185,18 +184,12 @@ def train_async(args):
exe.run(startup_prog) exe.run(startup_prog)
logging.debug('after run startup program')
if checkpoint is not None: if checkpoint is not None:
fluid.load(program=train_prog, model_path=checkpoint, executor=exe) fluid.load(program=train_prog, model_path=checkpoint, executor=exe)
if pretrained_model: if pretrained_model:
fluid.load(
def if_exist(var): program=train_prog, model_path=pretrained_model, executor=exe)
return os.path.exists(os.path.join(pretrained_model, var.name))
fluid.load(program=train_prog, model_path=pretrained_model, executor=exe)
if args.use_gpu: if args.use_gpu:
devicenum = get_gpu_num() devicenum = get_gpu_num()
...@@ -229,8 +222,7 @@ def train_async(args): ...@@ -229,8 +222,7 @@ def train_async(args):
while iter_no <= args.total_iter_num: while iter_no <= args.total_iter_num:
for train_batch in train_loader(): for train_batch in train_loader():
t1 = time.time() t1 = time.time()
lr, loss, feas, label = train_exe.run( lr, loss, feas, label = train_exe.run(feed=train_batch,
feed=train_batch,
fetch_list=train_fetch_list) fetch_list=train_fetch_list)
t2 = time.time() t2 = time.time()
period = t2 - t1 period = t2 - t1
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册