Download the [Cityscapes](https://www.cityscapes-dataset.com/) dataset. It should have this basic structure:
cityscapes/
├── cityscapes_list
│ ├── test.lst
│ ├── train.lst
│ ├── train+.lst
│ ├── train++.lst
│ ├── trainval.lst
│ └── val.lst
├── gtFine
│ ├── test
│ ├── train
│ └── val
├── leftImg8bit
│ ├── test
│ ├── train
│ └── val
├── license.txt
└── README
Download Pascal-Context dataset. It should have this basic structure:
pascalContext/
├── GroundTruth_trainval_mat
├── GroundTruth_trainval_png
├── JPEGImages
├── pascal_context_train.txt
├── pascal_context_val.txt
├── README.md
└── VOCdevkit
Then, create symlinks for the Cityscapes and Pascal-Context datasets
```
cd SemSegPaddle/data
ln -s $cityscapes ./
ln -s $pascalContext ./
```
### 2. Download pretrained weights
Downlaod pretrained [resnet-101](https://pan.baidu.com/s/1niXBDZnLlUIulB7FY068DQ) weights file, and put it into the directory: ***./pretrained_model***
Then, run the following command:
```
tar -zxvf ./repretrained/resnet101_v2.tgz -C pretrained_model
```
### 3. Training
select confiure file for training according to the DECODER\_NAME, BACKBONE\_NAME and DATASET\_NAME.