Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e9b5c69d
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e9b5c69d
编写于
10月 14, 2019
作者:
B
Bai Yifan
提交者:
whs
10月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PaddleSlim]Add yolov3_distillation demo to release/1.6 (#3564)
上级
203b6e19
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
543 addition
and
0 deletion
+543
-0
PaddleCV/PaddleDetection/slim/distillation/README.md
PaddleCV/PaddleDetection/slim/distillation/README.md
+119
-0
PaddleCV/PaddleDetection/slim/distillation/compress.py
PaddleCV/PaddleDetection/slim/distillation/compress.py
+325
-0
PaddleCV/PaddleDetection/slim/distillation/run.sh
PaddleCV/PaddleDetection/slim/distillation/run.sh
+47
-0
PaddleCV/PaddleDetection/slim/distillation/yolov3_mobilenet_v1_yolov3_resnet34_distillation.yml
...tion/yolov3_mobilenet_v1_yolov3_resnet34_distillation.yml
+18
-0
PaddleCV/PaddleDetection/slim/distillation/yolov3_resnet34.yml
...eCV/PaddleDetection/slim/distillation/yolov3_resnet34.yml
+34
-0
未找到文件。
PaddleCV/PaddleDetection/slim/distillation/README.md
0 → 100755
浏览文件 @
e9b5c69d
>运行该示例前请安装Paddle1.6或更高版本
# 检测模型蒸馏示例
## 概述
该示例使用PaddleSlim提供的
[
蒸馏策略
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#3-蒸馏
)
对检测库中的模型进行蒸馏训练。
在阅读该示例前,建议您先了解以下内容:
-
[
检测库的常规训练方法
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection
)
-
[
PaddleSlim使用文档
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md
)
## 配置文件说明
关于配置文件如何编写您可以参考:
-
[
PaddleSlim配置文件编写说明
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#122-%E9%85%8D%E7%BD%AE%E6%96%87%E4%BB%B6%E7%9A%84%E4%BD%BF%E7%94%A8
)
-
[
蒸馏策略配置文件编写说明
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#23-蒸馏
)
这里以ResNet34-YoloV3蒸馏MobileNetV1-YoloV3模型为例,首先,为了对
`student model`
和
`teacher model`
有个总体的认识,从而进一步确认蒸馏的对象,我们通过以下命令分别观察两个网络变量(Variable)的名称和形状:
```
python
# 观察student model的Variable
for
v
in
fluid
.
default_main_program
().
list_vars
():
if
"py_reader"
not
in
v
.
name
and
"double_buffer"
not
in
v
.
name
and
"generated_var"
not
in
v
.
name
:
print
(
v
.
name
,
v
.
shape
)
# 观察teacher model的Variable
for
v
in
teacher_program
.
list_vars
():
print
(
v
.
name
,
v
.
shape
)
```
经过对比可以发现,
`student model`
和
`teacher model`
的部分中间结果分别为:
```
bash
# student model
conv2d_15.tmp_0
# teacher model
teacher_teacher_conv2d_1.tmp_0
```
所以,我们用
`l2_distiller`
对这两个特征图做蒸馏。在配置文件中进行如下配置:
```
yaml
distillers
:
l2_distiller
:
class
:
'
L2Distiller'
teacher_feature_map
:
'
teacher_teacher_conv2d_1.tmp_0'
student_feature_map
:
'
conv2d_15.tmp_0'
distillation_loss_weight
:
1
strategies
:
distillation_strategy
:
class
:
'
DistillationStrategy'
distillers
:
[
'
l2_distiller'
]
start_epoch
:
0
end_epoch
:
270
```
我们也可以根据上述操作为蒸馏策略选择其他loss,PaddleSlim支持的有
`FSP_loss`
,
`L2_loss`
和
`softmax_with_cross_entropy_loss`
。
## 训练
根据
[
PaddleDetection/tools/train.py
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/PaddleDetection/tools/train.py
)
编写压缩脚本compress.py。
在该脚本中定义了Compressor对象,用于执行压缩任务。
您可以通过运行脚本
`run.sh`
运行该示例。
### 保存断点(checkpoint)
如果在配置文件中设置了
`checkpoint_path`
, 则在蒸馏任务执行过程中会自动保存断点,当任务异常中断时,
重启任务会自动从
`checkpoint_path`
路径下按数字顺序加载最新的checkpoint文件。如果不想让重启的任务从断点恢复,
需要修改配置文件中的
`checkpoint_path`
,或者将
`checkpoint_path`
路径下文件清空。
>注意:配置文件中的信息不会保存在断点中,重启前对配置文件的修改将会生效。
## 评估
如果在配置文件中设置了
`checkpoint_path`
,则每个epoch会保存一个压缩后的用于评估的模型,
该模型会保存在
`${checkpoint_path}/${epoch_id}/eval_model/`
路径下,包含
`__model__`
和
`__params__`
两个文件。
其中,
`__model__`
用于保存模型结构信息,
`__params__`
用于保存参数(parameters)信息。
如果不需要保存评估模型,可以在定义Compressor对象时,将
`save_eval_model`
选项设置为False(默认为True)。
## 预测
如果在配置文件中设置了
`checkpoint_path`
,并且在定义Compressor对象时指定了
`prune_infer_model`
选项,则每个epoch都会
保存一个
`inference model`
。该模型是通过删除eval_program中多余的operators而得到的。
该模型会保存在
`${checkpoint_path}/${epoch_id}/eval_model/`
路径下,包含
`__model__.infer`
和
`__params__`
两个文件。
其中,
`__model__.infer`
用于保存模型结构信息,
`__params__`
用于保存参数(parameters)信息。
更多关于
`prune_infer_model`
选项的介绍,请参考:
[
Compressor介绍
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md#121-%E5%A6%82%E4%BD%95%E6%94%B9%E5%86%99%E6%99%AE%E9%80%9A%E8%AE%AD%E7%BB%83%E8%84%9A%E6%9C%AC
)
### python预测
在脚本
<a
href=
"../infer.py"
>
slim/infer.py
</a>
中展示了如何使用fluid python API加载使用预测模型进行预测。
### PaddleLite
该示例中产出的预测(inference)模型可以直接用PaddleLite进行加载使用。
关于PaddleLite如何使用,请参考:
[
PaddleLite使用文档
](
https://github.com/PaddlePaddle/Paddle-Lite/wiki#%E4%BD%BF%E7%94%A8
)
## 示例结果
### MobileNetV1-YOLO-V3
| FLOPS |Box AP|
|---|---|
|baseline|76.2 |
|蒸馏后|- |
## FAQ
PaddleCV/PaddleDetection/slim/distillation/compress.py
0 → 100644
浏览文件 @
e9b5c69d
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
time
import
multiprocessing
import
numpy
as
np
from
collections
import
deque
,
OrderedDict
from
paddle.fluid.contrib.slim.core
import
Compressor
from
paddle.fluid.framework
import
IrGraph
def
set_paddle_flags
(
**
kwargs
):
for
key
,
value
in
kwargs
.
items
():
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
os
.
environ
[
key
]
=
str
(
value
)
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags
(
FLAGS_eager_delete_tensor_gb
=
0
,
# enable GC to save memory
)
from
paddle
import
fluid
import
sys
sys
.
path
.
append
(
"../../"
)
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.data.data_feed
import
create_reader
from
ppdet.utils.eval_utils
import
parse_fetches
,
eval_results
from
ppdet.utils.stats
import
TrainingStats
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.modeling.model_input
import
create_feed
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
"""
Run evaluation program, return program outputs.
"""
iter_id
=
0
results
=
[]
if
len
(
cls
)
!=
0
:
values
=
[]
for
i
in
range
(
len
(
cls
)):
_
,
accum_map
=
cls
[
i
].
get_map_var
()
cls
[
i
].
reset
(
exe
)
values
.
append
(
accum_map
)
images_num
=
0
start_time
=
time
.
time
()
has_bbox
=
'bbox'
in
keys
for
data
in
reader
():
data
=
test_feed
.
feed
(
data
)
feed_data
=
{
'image'
:
data
[
'image'
],
'im_size'
:
data
[
'im_size'
]}
outs
=
exe
.
run
(
compile_program
,
feed
=
feed_data
,
fetch_list
=
[
values
[
0
]],
return_numpy
=
False
)
outs
.
append
(
data
[
'gt_box'
])
outs
.
append
(
data
[
'gt_label'
])
outs
.
append
(
data
[
'is_difficult'
])
res
=
{
k
:
(
np
.
array
(
v
),
v
.
recursive_sequence_lengths
())
for
k
,
v
in
zip
(
keys
,
outs
)
}
results
.
append
(
res
)
if
iter_id
%
100
==
0
:
logger
.
info
(
'Test iter {}'
.
format
(
iter_id
))
iter_id
+=
1
images_num
+=
len
(
res
[
'bbox'
][
1
][
0
])
if
has_bbox
else
1
logger
.
info
(
'Test finish iter {}'
.
format
(
iter_id
))
end_time
=
time
.
time
()
fps
=
images_num
/
(
end_time
-
start_time
)
if
has_bbox
:
logger
.
info
(
'Total number of images: {}, inference time: {} fps.'
.
format
(
images_num
,
fps
))
else
:
logger
.
info
(
'Total iteration: {}, inference time: {} batch/s.'
.
format
(
images_num
,
fps
))
return
results
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
if
'log_iter'
not
in
cfg
:
cfg
.
log_iter
=
20
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
if
cfg
.
use_gpu
:
devices_num
=
fluid
.
core
.
get_cuda_device_count
()
else
:
devices_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
if
'train_feed'
not
in
cfg
:
train_feed
=
create
(
main_arch
+
'TrainFeed'
)
else
:
train_feed
=
create
(
cfg
.
train_feed
)
if
'eval_feed'
not
in
cfg
:
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
else
:
eval_feed
=
create
(
cfg
.
eval_feed
)
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
lr_builder
=
create
(
'LearningRate'
)
optim_builder
=
create
(
'OptimizerBuilder'
)
# build program
model
=
create
(
main_arch
)
train_loader
,
train_feed_vars
=
create_feed
(
train_feed
,
iterable
=
True
)
train_fetches
=
model
.
train
(
train_feed_vars
)
loss
=
train_fetches
[
'loss'
]
lr
=
lr_builder
()
opt
=
optim_builder
(
lr
)
opt
.
minimize
(
loss
)
#for v in fluid.default_main_program().list_vars():
# if "py_reader" not in v.name and "double_buffer" not in v.name and "generated_var" not in v.name:
# print(v.name, v.shape)
cfg
.
max_iters
=
258
train_reader
=
create_reader
(
train_feed
,
cfg
.
max_iters
,
FLAGS
.
dataset_dir
)
train_loader
.
set_sample_list_generator
(
train_reader
,
place
)
exe
.
run
(
fluid
.
default_startup_program
())
# parse train fetches
train_keys
,
train_values
,
_
=
parse_fetches
(
train_fetches
)
train_keys
.
append
(
'lr'
)
train_values
.
append
(
lr
.
name
)
train_fetch_list
=
[]
for
k
,
v
in
zip
(
train_keys
,
train_values
):
train_fetch_list
.
append
((
k
,
v
))
print
(
"train_fetch_list: {}"
.
format
(
train_fetch_list
))
eval_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
eval_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
model
=
create
(
main_arch
)
_
,
test_feed_vars
=
create_feed
(
eval_feed
,
iterable
=
True
)
fetches
=
model
.
eval
(
test_feed_vars
)
eval_prog
=
eval_prog
.
clone
(
True
)
eval_reader
=
create_reader
(
eval_feed
,
args_path
=
FLAGS
.
dataset_dir
)
test_data_feed
=
fluid
.
DataFeeder
(
test_feed_vars
.
values
(),
place
)
# parse eval fetches
extra_keys
=
[]
if
cfg
.
metric
==
'COCO'
:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
if
cfg
.
metric
==
'VOC'
:
extra_keys
=
[
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_keys
,
eval_values
,
eval_cls
=
parse_fetches
(
fetches
,
eval_prog
,
extra_keys
)
eval_fetch_list
=
[]
for
k
,
v
in
zip
(
eval_keys
,
eval_values
):
eval_fetch_list
.
append
((
k
,
v
))
print
(
"eval_fetch_list: {}"
.
format
(
eval_fetch_list
))
exe
.
run
(
startup_prog
)
checkpoint
.
load_params
(
exe
,
fluid
.
default_main_program
(),
cfg
.
pretrain_weights
)
best_box_ap_list
=
[]
def
eval_func
(
program
,
scope
):
results
=
eval_run
(
exe
,
program
,
eval_reader
,
eval_keys
,
eval_values
,
eval_cls
,
test_data_feed
)
resolution
=
None
is_bbox_normalized
=
False
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
box_ap_stats
=
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
cfg
.
num_classes
,
resolution
,
is_bbox_normalized
,
FLAGS
.
output_eval
)
if
len
(
best_box_ap_list
)
==
0
:
best_box_ap_list
.
append
(
box_ap_stats
[
0
])
elif
box_ap_stats
[
0
]
>
best_box_ap_list
[
0
]:
best_box_ap_list
[
0
]
=
box_ap_stats
[
0
]
logger
.
info
(
"Best test box ap: {}"
.
format
(
best_box_ap_list
[
0
]))
return
best_box_ap_list
[
0
]
test_feed
=
[(
'image'
,
test_feed_vars
[
'image'
].
name
),
(
'im_size'
,
test_feed_vars
[
'im_size'
].
name
)]
teacher_cfg
=
load_config
(
FLAGS
.
teacher_config
)
teacher_arch
=
teacher_cfg
.
architecture
teacher_programs
=
[]
teacher_program
=
fluid
.
Program
()
teacher_startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
teacher_program
,
teacher_startup_program
):
with
fluid
.
unique_name
.
guard
(
'teacher_'
):
teacher_feed_vars
=
OrderedDict
()
for
name
,
var
in
train_feed_vars
.
items
():
teacher_feed_vars
[
name
]
=
teacher_program
.
global_block
(
).
_clone_variable
(
var
,
force_persistable
=
False
)
model
=
create
(
teacher_arch
)
train_fetches
=
model
.
train
(
teacher_feed_vars
)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
#return
exe
.
run
(
teacher_startup_program
)
assert
FLAGS
.
teacher_pretrained
and
os
.
path
.
exists
(
FLAGS
.
teacher_pretrained
),
"teacher_pretrained should be set when teacher_model is not None."
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
FLAGS
.
teacher_pretrained
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
FLAGS
.
teacher_pretrained
,
main_program
=
teacher_program
,
predicate
=
if_exist
)
teacher_programs
.
append
(
teacher_program
.
clone
(
for_test
=
True
))
com
=
Compressor
(
place
,
fluid
.
global_scope
(),
fluid
.
default_main_program
(),
train_reader
=
train_reader
,
train_feed_list
=
[(
key
,
value
.
name
)
for
key
,
value
in
train_feed_vars
.
items
()],
train_fetch_list
=
train_fetch_list
,
eval_program
=
eval_prog
,
eval_reader
=
eval_reader
,
eval_feed_list
=
test_feed
,
eval_func
=
{
'map'
:
eval_func
},
eval_fetch_list
=
eval_fetch_list
[
0
:
1
],
save_eval_model
=
True
,
prune_infer_model
=
[[
"image"
,
"im_size"
],
[
"multiclass_nms_0.tmp_0"
]],
teacher_programs
=
teacher_programs
,
train_optimizer
=
None
,
distiller_optimizer
=
opt
,
log_period
=
20
)
com
.
config
(
FLAGS
.
slim_file
)
com
.
run
()
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"-t"
,
"--teacher_config"
,
default
=
None
,
type
=
str
,
help
=
"Config file of teacher architecture."
)
parser
.
add_argument
(
"-s"
,
"--slim_file"
,
default
=
None
,
type
=
str
,
help
=
"Config file of PaddleSlim."
)
parser
.
add_argument
(
"-r"
,
"--resume_checkpoint"
,
default
=
None
,
type
=
str
,
help
=
"Checkpoint path for resuming training."
)
parser
.
add_argument
(
"--eval"
,
action
=
'store_true'
,
default
=
False
,
help
=
"Whether to perform evaluation in train"
)
parser
.
add_argument
(
"--teacher_pretrained"
,
default
=
None
,
type
=
str
,
help
=
"Whether to use pretrained model."
)
parser
.
add_argument
(
"--output_eval"
,
default
=
None
,
type
=
str
,
help
=
"Evaluation directory, default is current directory."
)
parser
.
add_argument
(
"-d"
,
"--dataset_dir"
,
default
=
None
,
type
=
str
,
help
=
"Dataset path, same as DataFeed.dataset.dataset_dir"
)
FLAGS
=
parser
.
parse_args
()
main
()
PaddleCV/PaddleDetection/slim/distillation/run.sh
0 → 100644
浏览文件 @
e9b5c69d
#!/usr/bin/env bash
# download pretrain model
root_url
=
"https://paddlemodels.bj.bcebos.com/object_detection"
yolov3_r34_voc
=
"yolov3_r34_voc.tar"
pretrain_dir
=
'./pretrain'
if
[
!
-d
${
pretrain_dir
}
]
;
then
mkdir
${
pretrain_dir
}
fi
cd
${
pretrain_dir
}
if
[
!
-f
${
yolov3_r34_voc
}
]
;
then
wget
${
root_url
}
/
${
yolov3_r34_voc
}
tar
xf
${
yolov3_r34_voc
}
fi
cd
-
# enable GC strategy
export
FLAGS_fast_eager_deletion_mode
=
1
export
FLAGS_eager_delete_tensor_gb
=
0.0
# for distillation
#-----------------
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
# Fixing name conflicts in distillation
cd
${
pretrain_dir
}
/yolov3_r34_voc
for
files
in
$(
ls
teacher_
*
)
do
mv
$files
${
files
#*_
}
done
for
files
in
$(
ls
*
)
do
mv
$files
"teacher_"
$files
done
cd
-
python
-u
compress.py
\
-c
../../configs/yolov3_mobilenet_v1_voc.yml
\
-t
yolov3_resnet34.yml
\
-s
yolov3_mobilenet_v1_yolov3_resnet34_distillation.yml
\
-o
YoloTrainFeed.batch_size
=
64
\
-d
../../dataset/voc
\
--teacher_pretrained
./pretrain/yolov3_r34_voc
\
>
yolov3_distallation.log 2>&1 &
tailf yolov3_distallation.log
PaddleCV/PaddleDetection/slim/distillation/yolov3_mobilenet_v1_yolov3_resnet34_distillation.yml
0 → 100644
浏览文件 @
e9b5c69d
version
:
1.0
distillers
:
l2_distiller
:
class
:
'
L2Distiller'
teacher_feature_map
:
'
teacher_teacher_conv2d_1.tmp_0'
student_feature_map
:
'
conv2d_15.tmp_0'
distillation_loss_weight
:
1
strategies
:
distillation_strategy
:
class
:
'
DistillationStrategy'
distillers
:
[
'
l2_distiller'
]
start_epoch
:
0
end_epoch
:
270
compressor
:
epoch
:
271
checkpoint_path
:
'
./checkpoints/'
strategies
:
-
distillation_strategy
PaddleCV/PaddleDetection/slim/distillation/yolov3_resnet34.yml
0 → 100644
浏览文件 @
e9b5c69d
architecture
:
YOLOv3
log_smooth_window
:
20
metric
:
VOC
map_type
:
11point
num_classes
:
20
weight_prefix_name
:
teacher_
YOLOv3
:
backbone
:
ResNet
yolo_head
:
YOLOv3Head
ResNet
:
norm_type
:
sync_bn
freeze_at
:
0
freeze_norm
:
false
norm_decay
:
0.
depth
:
34
feature_maps
:
[
3
,
4
,
5
]
YOLOv3Head
:
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
norm_decay
:
0.
ignore_thresh
:
0.7
label_smooth
:
false
nms
:
background_label
:
-1
keep_top_k
:
100
nms_threshold
:
0.45
nms_top_k
:
1000
normalized
:
false
score_threshold
:
0.01
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录