Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e987e3e8
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e987e3e8
编写于
5月 24, 2017
作者:
C
Chuanjiang Song
提交者:
GitHub
5月 24, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update README.md
上级
1771d6fc
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
25 addition
and
17 deletion
+25
-17
nce_cost/README.md
nce_cost/README.md
+25
-17
未找到文件。
nce_cost/README.md
浏览文件 @
e987e3e8
...
...
@@ -2,8 +2,8 @@
## 背景介绍
在自然语言处理领域中,通常使用特征向量来表示一个单词,但是如何使用准确的词向量来表示语义却是一个难点,详细内容可以在
[
词向量章节
](
https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.cn.md
)
中查阅到,原作者使用神经概率语言模型(Neural Probabilistic Language Model, NPLM)来训练词向量,尽管 NPLM 有优异的精度表现,但是相对于传统的 N-gram 统计模型,训练时间还是太漫长了
\[
[
4
](
#参考文献
)
\]
。常用的优化这个问题算法主要有两个:一个是 hierarchical-sigmoid
\[
[
3
](
#参考文献
)
\]
另一个 噪声对比估计(Noise-contrastive estimation, NCE)
\[
[
2
](
#参考文献
)
\]
。为了克服这个问题本文引入了 NCE 方法。本文将以训练 NPLM 作为例子来讲述如何使用 NCE。
## NCE
Layer
NCE 是一种快速
地
对离散分布进行估计的方法,应用到本文中的问题:训练 NPLM 计算开销很大,原因是 softmax 函数计算时需要考虑每个类别的指数项,必须计算字典中的所有单词,而在一般语料集上面字典往往非常大
\[
[
4
](
#参考文献
)
\]
,从而导致整个训练过程十分耗时。与常用的 hierarchical-sigmoid
\[
[
3
](
#参考文献
)
\]
方法相比,NCE 不再使用复杂的二叉树来构造目标函数,而是采用相对简单的随机负采样,以大幅提升计算效率。
## NCE
概览
NCE 是一种快速对离散分布进行估计的方法,应用到本文中的问题:训练 NPLM 计算开销很大,原因是 softmax 函数计算时需要考虑每个类别的指数项,必须计算字典中的所有单词,而在一般语料集上面字典往往非常大
\[
[
4
](
#参考文献
)
\]
,从而导致整个训练过程十分耗时。与常用的 hierarchical-sigmoid
\[
[
3
](
#参考文献
)
\]
方法相比,NCE 不再使用复杂的二叉树来构造目标函数,而是采用相对简单的随机负采样,以大幅提升计算效率。
假设已知具体的上下文 $h$,并且知道这个分布为 $P^h(w)$ ,并将从中抽样出来的数据作为正样例,而从一个噪音分布 $P_n(w)$ 抽样的数据作为负样例。我们可以任意选择合适的噪音分布,默认为无偏的均匀分布。这里我们同时假设噪音样例 k 倍于数据样例,则训练数据被抽中的概率为
\[
[
2
](
#参考文献
)
\]
:
...
...
@@ -17,31 +17,44 @@ J^h(\theta )=E_{ P_d^h }\left[ \log { P^h(D=1|w,\theta ) } \right] +kE_{ P_n }\
$$
\\\\\q
quad =E_{ P_d^h }
\l
eft[
\l
og {
\s
igma (
\D
elta s_
\t
heta(w,h)) }
\r
ight] +kE_{ P_n }
\l
eft[
\l
og (1-
\s
igma (
\D
elta s_
\t
heta(w,h)))
\r
ight]$$
总体上来说,NCE 是通过构造逻辑回归(logistic regression),对正样例和负样例做二分类,对于每一个样本,将自身的预测词 label 作为正样例,同时采样出
k 个其他词 label 作为负样例,从而只需要计算样本在这 k+1
个 label 上的概率。相比原始的 softmax 分类需要计算每个类别的分数,然后归一化得到概率,节约了大量的时间消耗。
总体上来说,NCE 是通过构造逻辑回归(logistic regression),对正样例和负样例做二分类,对于每一个样本,将自身的预测词 label 作为正样例,同时采样出
$k$ 个其他词 label 作为负样例,从而只需要计算样本在这 $k+1$
个 label 上的概率。相比原始的 softmax 分类需要计算每个类别的分数,然后归一化得到概率,节约了大量的时间消耗。
## 实验数据
本文采用 Penn Treebank (PTB)
数据集(
[
Tomas Mikolov预处理版本
](
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
)
),这个数据集是可以用来训练语言模型的。PaddlePaddle 提供
[
paddle.dataset.imikolov
](
https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/dataset/imikolov.py
)
接口来方便调用数据,其中实现了数据自动下载,字典生成,滑动窗口等功能,返回的迭代器是前4个词让语言模型预测第5个词
,共有42068句训练数据,3761句测试数据。
本文采用 Penn Treebank (PTB)
数据集(
[
Tomas Mikolov预处理版本
](
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
)
)来训练语言模型。PaddlePaddle 提供
[
paddle.dataset.imikolov
](
https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/dataset/imikolov.py
)
接口来方便调用这些数据,如果当前目录没有找到数据它会自动下载并验证文件的完整性。并提供大小为5的滑动窗口对数据做预处理工作,方便后期处理。语料语种为英文
,共有42068句训练数据,3761句测试数据。
## 网络结构
本文在训练 N-gram 语言模型时,使用前4个词作为上下文来预测当前词。网络输入为词在字典中的 id,然后查询词向量词表获取词向量,接着拼接4个词的词向量,然后接入一个全连接隐层,最后是 NCE 层。
详细网络结构见图1:
N-gram 神经概率语言模型
详细网络结构见图1:
<p
align=
"center"
>
<img
src=
"images/network_conf.png"
width =
"70%"
align=
"center"
/><br/>
图1. 网络配置结构
</p>
可以看到,模型主要分为如下几个部分:
可以看到,模型主要分为如下几个部分
构成
:
1.
**输入层**
:输入的 ptb 样本由原始的英文单词组成,将每个英文单词转换为字典中的 id 表示,使用唯一的 id 表示可以区分每个单词。
2.
**词向量层**
:比起原先的 id 表示,词向量表示更能体现词与词之间的语义关系。这里使用
trainable
的 embedding 矩阵,将原先的 id 表示转换为固定维度的词向量表示。训练完成之后,词语之间的语义相似度可以使用词向量之间的距离来表示,语义越相似,距离越近。
2.
**词向量层**
:比起原先的 id 表示,词向量表示更能体现词与词之间的语义关系。这里使用
可更新
的 embedding 矩阵,将原先的 id 表示转换为固定维度的词向量表示。训练完成之后,词语之间的语义相似度可以使用词向量之间的距离来表示,语义越相似,距离越近。
3.
**词向量拼接层**
:将词向量进行串联,并将词向量首尾相接形成一个长向量。这样可以方便后面全连接层的处理。
4.
**全连接隐层**
:将上一层获得的长向量输入到一层隐层的神经网络,输出特征向量。全连接的隐层可以增强网络的学习能力。
5.
**NCE层**
:训练时,可以直接实用 PaddlePaddle 提供的 NCE Layer。
5.
**NCE层**
:训练时可以直接实用 PaddlePaddle 提供的 NCE Layer。
## 训练阶段
训练直接运行
``` python train.py ```
。程序第一次运行会检测用户缓存文件夹中是否包含 ptb 数据集,如果未包含,则自动下载。运行过程中,每1000个 iteration 会打印模型训练信息,主要包含训练损失,每个 pass 计算一次测试数据集上的损失,并同时会保存一次最新的模型。在 PaddlePaddle 中也有已经实现好的 NCE layer,有一些参数需要自行根据实际场景进行设计,代码实现如下:
训练直接运行
``` python train.py ```
。程序第一次运行会检测用户缓存文件夹中是否包含 ptb 数据集,如果未包含,则自动下载。运行过程中,每1000个 iteration 会打印模型训练信息,主要包含训练损失,每个 pass 会计算测试数据集上的损失,并同时会保存最新的模型快照。在 PaddlePaddle 中有已经实现好的 NCE Layer,一些参数需要自行根据实际场景进行设计,可参考的调参方案如下:
| 参数名 | 参数作用 | 介绍 |
|:------ |:-------| :--------|
| param
\_
attr / bias
\_
attr | 用来设置参数名字 | 可以方便后面预测阶段好来实现网络的参数共享,具体内容在下一个章节里会陈述。|
| num
\_
neg
\_
samples | 参数负责控制对负样例的采样个数。 | 可以控制正负样本比例,这个值取值区间为 [1, 字典大小-1],负样本个数越多则整个模型的训练速度越慢,模型精度也会越高 |
| neg
\_
distribution | 控制生成负样例标签的分布,默认是一个均匀分布。 | 可以自行控制负样本采样时各个类别的采样权重,比如希望正样例为“晴天”时,负样例“洪水”在训练时更被着重区分,则可以将“洪水”这个类别的采样权重增加。 |
| act | 表示使用何种激活函数。 | 根据 NCE 的原理,这里应该使用 sigmoid 函数。 |
具体代码实现如下:
```
python
cost
=
paddle
.
layer
.
nce
(
...
...
@@ -55,18 +68,11 @@ cost = paddle.layer.nce(
neg_distribution
=
None
)
```
| 参数名 | 参数作用 | 介绍 |
|:-------------: |:---------------:| :-------------:|
| param
\_
attr / bias
\_
attr | 用来设置参数名字 | 可以方便后面预测阶段好来实现网络的参数共享,具体内容下一个章节里会陈述。|
| num
\_
neg
\_
samples | 参数负责控制对负样例的采样个数。 | 可以控制正负样本比例,这个值取值区间为 [1, 字典大小-1],负样本个数越多则整个模型的训练速度越慢,模型精度也会越高 |
| neg
\_
distribution | 控制生成负样例标签的分布,默认是一个均匀分布。 | 可以自行控制负样本采样时各个类别的采样权重,比如希望正样例为“晴天”时,负样例“洪水”在训练时更被着重区分,则可以将“洪水”这个类别的采样权重增加。 |
| act | 表示使用何种激活函数。 | 根据 NCE 的原理,这里应该使用 sigmoid 函数。 |
## 预测阶段
预测直接运行
``` python infer.py ```
,程序首先会加载最新模型,然后按照 batch 大小依次进行预测,并打印预测结果。因为训练和预测计算逻辑不一样,预测阶段需要共享 NCE Layer 中的逻辑回归训练时得到的参数,所以要写一个推断层,推断层的参数为预先训练好的参数。
具体实现推断层的方法
,先是通过
```paddle.attr.Param```
方法获取参数值,然后使用
```paddle.layer.trans_full_matrix_projection```
对隐层输出向量
```hidden_layer```
做一个矩阵右乘,PaddlePaddle 会自行在模型中寻找相同参数名的参数并获取。右乘后得到类别向量,将类别向量输入 softmax 做一个归一操作
,从而得到最后的类别概率分布。
具体实现推断层的方法
:先是通过
```paddle.attr.Param```
方法获取参数值,然后使用
```paddle.layer.trans_full_matrix_projection```
对隐层输出向量
```hidden_layer```
做一个矩阵右乘,PaddlePaddle 会自行在模型中寻找相同参数名的参数并获取。右乘求和后得到类别向量,将类别向量输入 softmax 做一个归一操作,和为1
,从而得到最后的类别概率分布。
代码实现如下:
...
...
@@ -79,6 +85,8 @@ with paddle.layer.mixed(
input
=
hidden_layer
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'nce_w'
))
```
## 参考文献
1.
Mathematiques C D R.
[
Quick Training of Probabilistic Neural Nets by Importance Sampling
](
http://www.iro.umontreal.ca/~lisa/pointeurs/submit_aistats2003.pdf
)[
C
]
// 2002.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录