diff --git a/dygraph/bmn/README.md b/dygraph/bmn/README.md index c2de8e8c9b0bab0c6c0e024faae472dc4e655b46..363287fcaf3b916708f0bf2bdf2e8de2128d6a8d 100644 --- a/dygraph/bmn/README.md +++ b/dygraph/bmn/README.md @@ -55,7 +55,7 @@ BMN的训练数据采用ActivityNet1.3提供的数据集,我们提供了处理 bash run.sh -若使用单卡训练,请将配置文件bmn.yaml中`TRAIN`和`VALID`对应的num\_gpus调整为1,启动方式如下: +若使用单卡训练,请将配置文件bmn.yaml中`TRAIN`和`VALID`对应的num\_gpus调整为1,并将train.py文件最后一行的`nprocs`参数值设为1,启动方式如下: export CUDA_VISIBLE_DEVICES=0 python train.py diff --git a/dygraph/bmn/train.py b/dygraph/bmn/train.py index 21591bb962d80b6224fd449d3b21dcf18aacb2df..bbe5783b15e38d9059544477b5a09eb0140ccc4e 100644 --- a/dygraph/bmn/train.py +++ b/dygraph/bmn/train.py @@ -262,4 +262,4 @@ def train_bmn(args): if __name__ == "__main__": args = parse_args() - dist.spawn(train_bmn, args=(args, ), nprocs=4) + dist.spawn(train_bmn, args=(args, ), nprocs=4) #nprocs=1 when single card