Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e64bd9c4
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e64bd9c4
编写于
5月 04, 2019
作者:
Y
Yibing Liu
提交者:
GitHub
5月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix core.xxx usage in cv (#2181)
上级
4bf70378
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
240 addition
and
103 deletion
+240
-103
PaddleCV/image_classification/dist_train/dist_train.py
PaddleCV/image_classification/dist_train/dist_train.py
+64
-39
PaddleCV/image_classification/fast_imagenet/train.py
PaddleCV/image_classification/fast_imagenet/train.py
+175
-63
PaddleRL/DeepQNetwork/play.py
PaddleRL/DeepQNetwork/play.py
+1
-1
未找到文件。
PaddleCV/image_classification/dist_train/dist_train.py
浏览文件 @
e64bd9c4
...
...
@@ -23,7 +23,6 @@ import numpy as np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
six
import
sys
sys
.
path
.
append
(
".."
)
...
...
@@ -35,6 +34,7 @@ from batch_merge import copyback_repeat_bn_params, append_bn_repeat_init_op
from
dist_utils
import
pserver_prepare
,
nccl2_prepare
from
env
import
dist_env
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
...
...
@@ -74,6 +74,7 @@ def parse_args():
args
=
parser
.
parse_args
()
return
args
def
get_device_num
():
if
os
.
getenv
(
"CPU_NUM"
):
return
int
(
os
.
getenv
(
"CPU_NUM"
))
...
...
@@ -81,24 +82,24 @@ def get_device_num():
if
visible_device
:
device_num
=
len
(
visible_device
.
split
(
','
))
else
:
device_num
=
subprocess
.
check_output
([
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
device_num
=
subprocess
.
check_output
(
[
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
return
device_num
def
prepare_reader
(
is_train
,
pyreader
,
args
,
pass_id
=
1
):
# NOTE: always use infinite reader for dist training
if
is_train
:
reader
=
train
(
data_dir
=
args
.
data_dir
,
pass_id_as_seed
=
pass_id
,
infinite
=
True
)
reader
=
train
(
data_dir
=
args
.
data_dir
,
pass_id_as_seed
=
pass_id
,
infinite
=
True
)
else
:
reader
=
val
(
data_dir
=
args
.
data_dir
)
if
is_train
:
bs
=
args
.
batch_size
/
get_device_num
()
else
:
bs
=
16
pyreader
.
decorate_paddle_reader
(
paddle
.
batch
(
reader
,
batch_size
=
bs
))
pyreader
.
decorate_paddle_reader
(
paddle
.
batch
(
reader
,
batch_size
=
bs
))
def
build_program
(
is_train
,
main_prog
,
startup_prog
,
args
):
pyreader
=
None
...
...
@@ -118,9 +119,11 @@ def build_program(is_train, main_prog, startup_prog, args):
image
,
label
=
fluid
.
layers
.
read_file
(
pyreader
)
if
args
.
fp16
:
image
=
fluid
.
layers
.
cast
(
image
,
"float16"
)
model_def
=
models
.
__dict__
[
args
.
model
](
layers
=
50
,
is_train
=
is_train
)
model_def
=
models
.
__dict__
[
args
.
model
](
layers
=
50
,
is_train
=
is_train
)
predict
=
model_def
.
net
(
image
,
class_dim
=
class_dim
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
predict
,
label
,
return_softmax
=
True
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
predict
,
label
,
return_softmax
=
True
)
if
args
.
scale_loss
>
1
:
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
*
float
(
args
.
scale_loss
)
else
:
...
...
@@ -140,20 +143,20 @@ def build_program(is_train, main_prog, startup_prog, args):
total_images
=
args
.
total_images
/
trainer_count
if
os
.
getenv
(
"FLAGS_selected_gpus"
):
step
=
int
(
total_images
/
(
args
.
batch_size
/
device_num_per_worker
*
args
.
multi_batch_repeat
)
+
1
)
step
=
int
(
total_images
/
(
args
.
batch_size
/
device_num_per_worker
*
args
.
multi_batch_repeat
)
+
1
)
else
:
step
=
int
(
total_images
/
(
args
.
batch_size
*
args
.
multi_batch_repeat
)
+
1
)
step
=
int
(
total_images
/
(
args
.
batch_size
*
args
.
multi_batch_repeat
)
+
1
)
warmup_steps
=
step
*
5
# warmup 5 passes
epochs
=
[
30
,
60
,
80
]
bd
=
[
step
*
e
for
e
in
epochs
]
base_lr
=
end_lr
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
print
(
"start lr: %s, end lr: %s, decay boundaries: %s"
%
(
start_lr
,
end_lr
,
bd
))
print
(
"start lr: %s, end lr: %s, decay boundaries: %s"
%
(
start_lr
,
end_lr
,
bd
))
# NOTE: we put weight decay in layers config, and remove
# weight decay on bn layers, so don't add weight decay in
...
...
@@ -162,7 +165,9 @@ def build_program(is_train, main_prog, startup_prog, args):
learning_rate
=
utils
.
learning_rate
.
lr_warmup
(
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
warmup_steps
,
start_lr
,
end_lr
),
warmup_steps
,
start_lr
,
end_lr
),
momentum
=
0.9
)
if
args
.
enable_dgc
:
...
...
@@ -170,7 +175,9 @@ def build_program(is_train, main_prog, startup_prog, args):
learning_rate
=
utils
.
learning_rate
.
lr_warmup
(
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
warmup_steps
,
start_lr
,
end_lr
),
warmup_steps
,
start_lr
,
end_lr
),
momentum
=
0.9
,
sparsity
=
[
0.999
,
0.999
],
rampup_begin_step
=
args
.
rampup_begin_step
)
...
...
@@ -178,10 +185,14 @@ def build_program(is_train, main_prog, startup_prog, args):
if
args
.
fp16
:
params_grads
=
optimizer
.
backward
(
avg_cost
)
master_params_grads
=
utils
.
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
args
.
scale_loss
,
reduce_master_grad
=
args
.
reduce_master_grad
)
params_grads
,
main_prog
,
startup_prog
,
args
.
scale_loss
,
reduce_master_grad
=
args
.
reduce_master_grad
)
optimizer
.
apply_gradients
(
master_params_grads
)
utils
.
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
utils
.
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
else
:
optimizer
.
minimize
(
avg_cost
)
...
...
@@ -208,6 +219,7 @@ def test_single(exe, test_prog, args, pyreader, fetch_list):
test_avg_loss
=
np
.
mean
(
np
.
array
(
test_losses
))
return
test_avg_loss
,
np
.
mean
(
acc1
.
eval
()),
np
.
mean
(
acc5
.
eval
())
def
test_parallel
(
exe
,
test_prog
,
args
,
pyreader
,
fetch_list
):
acc1
=
fluid
.
metrics
.
Accuracy
()
acc5
=
fluid
.
metrics
.
Accuracy
()
...
...
@@ -231,16 +243,20 @@ def run_pserver(train_prog, startup_prog):
server_exe
.
run
(
startup_prog
)
server_exe
.
run
(
train_prog
)
def
train_parallel
(
args
):
train_prog
=
fluid
.
Program
()
test_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
train_pyreader
,
train_cost
,
train_acc1
,
train_acc5
=
build_program
(
True
,
train_prog
,
startup_prog
,
args
)
test_pyreader
,
test_cost
,
test_acc1
,
test_acc5
=
build_program
(
False
,
test_prog
,
startup_prog
,
args
)
train_pyreader
,
train_cost
,
train_acc1
,
train_acc5
=
build_program
(
True
,
train_prog
,
startup_prog
,
args
)
test_pyreader
,
test_cost
,
test_acc1
,
test_acc5
=
build_program
(
False
,
test_prog
,
startup_prog
,
args
)
if
args
.
update_method
==
"pserver"
:
train_prog
,
startup_prog
=
pserver_prepare
(
args
,
train_prog
,
startup_prog
)
train_prog
,
startup_prog
=
pserver_prepare
(
args
,
train_prog
,
startup_prog
)
elif
args
.
update_method
==
"nccl2"
:
nccl2_prepare
(
args
,
startup_prog
,
main_prog
=
train_prog
)
...
...
@@ -253,15 +269,17 @@ def train_parallel(args):
gpu_id
=
0
if
os
.
getenv
(
"FLAGS_selected_gpus"
):
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
))
place
=
core
.
CUDAPlace
(
gpu_id
)
if
args
.
use_gpu
else
core
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
gpu_id
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
startup_exe
=
fluid
.
Executor
(
place
)
if
args
.
multi_batch_repeat
>
1
:
append_bn_repeat_init_op
(
train_prog
,
startup_prog
,
args
.
multi_batch_repeat
)
append_bn_repeat_init_op
(
train_prog
,
startup_prog
,
args
.
multi_batch_repeat
)
startup_exe
.
run
(
startup_prog
)
if
args
.
checkpoint
:
fluid
.
io
.
load_persistables
(
startup_exe
,
args
.
checkpoint
,
main_program
=
train_prog
)
fluid
.
io
.
load_persistables
(
startup_exe
,
args
.
checkpoint
,
main_program
=
train_prog
)
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
args
.
num_threads
...
...
@@ -274,7 +292,8 @@ def train_parallel(args):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_inplace
=
False
build_strategy
.
memory_optimize
=
False
build_strategy
.
enable_sequential_execution
=
bool
(
args
.
enable_sequential_execution
)
build_strategy
.
enable_sequential_execution
=
bool
(
args
.
enable_sequential_execution
)
if
args
.
reduce_strategy
==
"reduce"
:
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
(
...
...
@@ -324,9 +343,11 @@ def train_parallel(args):
# 1. MP mode, batch size for current process should be args.batch_size / GPUs
# 2. SP/PG mode, batch size for each process should be original args.batch_size
if
os
.
getenv
(
"FLAGS_selected_gpus"
):
steps_per_pass
=
args
.
total_images
/
(
args
.
batch_size
/
get_device_num
())
/
args
.
dist_env
[
"num_trainers"
]
steps_per_pass
=
args
.
total_images
/
(
args
.
batch_size
/
get_device_num
())
/
args
.
dist_env
[
"num_trainers"
]
else
:
steps_per_pass
=
args
.
total_images
/
args
.
batch_size
/
args
.
dist_env
[
"num_trainers"
]
steps_per_pass
=
args
.
total_images
/
args
.
batch_size
/
args
.
dist_env
[
"num_trainers"
]
for
pass_id
in
range
(
args
.
num_epochs
):
num_samples
=
0
...
...
@@ -339,9 +360,11 @@ def train_parallel(args):
if
batch_id
%
30
==
0
:
fetch_ret
=
exe
.
run
(
fetch_list
)
fetched_data
=
[
np
.
mean
(
np
.
array
(
d
))
for
d
in
fetch_ret
]
print
(
"Pass [%d/%d], batch [%d/%d], loss %s, acc1: %s, acc5: %s, avg batch time %.4f"
%
(
pass_id
,
args
.
num_epochs
,
batch_id
,
steps_per_pass
,
fetched_data
[
0
],
fetched_data
[
1
],
fetched_data
[
2
],
(
time
.
time
()
-
start_time
)
/
batch_id
))
print
(
"Pass [%d/%d], batch [%d/%d], loss %s, acc1: %s, acc5: %s, avg batch time %.4f"
%
(
pass_id
,
args
.
num_epochs
,
batch_id
,
steps_per_pass
,
fetched_data
[
0
],
fetched_data
[
1
],
fetched_data
[
2
],
(
time
.
time
()
-
start_time
)
/
batch_id
))
else
:
fetch_ret
=
exe
.
run
([])
except
fluid
.
core
.
EOFException
:
...
...
@@ -359,7 +382,8 @@ def train_parallel(args):
if
args
.
multi_batch_repeat
>
1
:
copyback_repeat_bn_params
(
train_prog
)
test_fetch_list
=
[
test_cost
.
name
,
test_acc1
.
name
,
test_acc5
.
name
]
test_ret
=
test_single
(
startup_exe
,
test_prog
,
args
,
test_pyreader
,
test_fetch_list
)
test_ret
=
test_single
(
startup_exe
,
test_prog
,
args
,
test_pyreader
,
test_fetch_list
)
# NOTE: switch to below line if you use ParallelExecutor to run test.
# test_ret = test_parallel(test_exe, test_prog, args, test_pyreader,test_fetch_list)
print
(
"Pass: %d, Test Loss %s, test acc1: %s, test acc5: %s
\n
"
%
...
...
@@ -369,7 +393,8 @@ def train_parallel(args):
print
(
"saving model to "
,
model_path
)
if
not
os
.
path
.
isdir
(
model_path
):
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
startup_exe
,
model_path
,
main_program
=
train_prog
)
fluid
.
io
.
save_persistables
(
startup_exe
,
model_path
,
main_program
=
train_prog
)
train_pyreader
.
reset
()
startup_exe
.
close
()
print
(
"total train time: "
,
time
.
time
()
-
over_all_start
)
...
...
@@ -397,6 +422,6 @@ def main():
args
.
dist_env
=
dist_env
()
train_parallel
(
args
)
if
__name__
==
"__main__"
:
main
()
PaddleCV/image_classification/fast_imagenet/train.py
浏览文件 @
e64bd9c4
...
...
@@ -23,7 +23,6 @@ import torchvision_reader
import
torch
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.transpiler.distribute_transpiler
as
distribute_transpiler
...
...
@@ -34,6 +33,7 @@ import functools
from
models.fast_imagenet
import
FastImageNet
,
lr_decay
import
utils
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
...
...
@@ -61,6 +61,7 @@ def parse_args():
args
=
parser
.
parse_args
()
return
args
def
get_device_num
():
import
subprocess
visible_device
=
os
.
getenv
(
'CUDA_VISIBLE_DEVICES'
)
...
...
@@ -71,8 +72,10 @@ def get_device_num():
[
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
return
device_num
DEVICE_NUM
=
get_device_num
()
def
test_parallel
(
exe
,
test_args
,
args
,
test_reader
,
feeder
,
bs
):
acc_evaluators
=
[]
for
i
in
xrange
(
len
(
test_args
[
2
])):
...
...
@@ -86,18 +89,26 @@ def test_parallel(exe, test_args, args, test_reader, feeder, bs):
ret_result
=
[
np
.
mean
(
np
.
array
(
ret
))
for
ret
in
acc_rets
]
print
(
"Test batch: [%d], acc_rets: [%s]"
%
(
batch_id
,
ret_result
))
for
i
,
e
in
enumerate
(
acc_evaluators
):
e
.
update
(
value
=
np
.
array
(
acc_rets
[
i
]),
weight
=
bs
)
e
.
update
(
value
=
np
.
array
(
acc_rets
[
i
]),
weight
=
bs
)
num_samples
=
batch_id
*
bs
*
DEVICE_NUM
print_train_time
(
start_ts
,
time
.
time
(),
num_samples
)
return
[
e
.
eval
()
for
e
in
acc_evaluators
]
def
build_program
(
args
,
is_train
,
main_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
bs
,
min_scale
,
rect_val
=
False
):
def
build_program
(
args
,
is_train
,
main_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
bs
,
min_scale
,
rect_val
=
False
):
dshape
=
[
3
,
sz
,
sz
]
class_dim
=
1000
dshape
=
[
3
,
sz
,
sz
]
class_dim
=
1000
pyreader
=
None
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
...
...
@@ -108,23 +119,33 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
capacity
=
bs
*
DEVICE_NUM
,
shapes
=
([
-
1
]
+
dshape
,
(
-
1
,
1
)),
dtypes
=
(
'uint8'
,
'int64'
),
name
=
"train_reader_"
+
str
(
sz
)
if
is_train
else
"test_reader_"
+
str
(
sz
),
name
=
"train_reader_"
+
str
(
sz
)
if
is_train
else
"test_reader_"
+
str
(
sz
),
use_double_buffer
=
True
)
input
,
label
=
fluid
.
layers
.
read_file
(
pyreader
)
else
:
input
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
244
,
244
],
dtype
=
"uint8"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
input
=
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
244
,
244
],
dtype
=
"uint8"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cast_img_type
=
"float16"
if
args
.
fp16
else
"float32"
cast
=
fluid
.
layers
.
cast
(
input
,
cast_img_type
)
img_mean
=
fluid
.
layers
.
create_global_var
([
3
,
1
,
1
],
0.0
,
cast_img_type
,
name
=
"img_mean"
,
persistable
=
True
)
img_std
=
fluid
.
layers
.
create_global_var
([
3
,
1
,
1
],
0.0
,
cast_img_type
,
name
=
"img_std"
,
persistable
=
True
)
img_mean
=
fluid
.
layers
.
create_global_var
(
[
3
,
1
,
1
],
0.0
,
cast_img_type
,
name
=
"img_mean"
,
persistable
=
True
)
img_std
=
fluid
.
layers
.
create_global_var
(
[
3
,
1
,
1
],
0.0
,
cast_img_type
,
name
=
"img_std"
,
persistable
=
True
)
# image = (image - (mean * 255.0)) / (std * 255.0)
t1
=
fluid
.
layers
.
elementwise_sub
(
cast
,
img_mean
,
axis
=
1
)
t2
=
fluid
.
layers
.
elementwise_div
(
t1
,
img_std
,
axis
=
1
)
model
=
FastImageNet
(
is_train
=
is_train
)
predict
=
model
.
net
(
t2
,
class_dim
=
class_dim
,
img_size
=
sz
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
predict
,
label
,
return_softmax
=
True
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
predict
,
label
,
return_softmax
=
True
)
if
args
.
scale_loss
>
1
:
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
*
float
(
args
.
scale_loss
)
else
:
...
...
@@ -139,22 +160,29 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
total_images
=
args
.
total_images
lr
=
args
.
lr
epochs
=
[(
0
,
7
),
(
7
,
13
),
(
13
,
22
),
(
22
,
25
),
(
25
,
28
)]
bs_epoch
=
[
bs
*
DEVICE_NUM
for
bs
in
[
224
,
224
,
96
,
96
,
50
]]
bs_scale
=
[
bs
*
1.0
/
bs_epoch
[
0
]
for
bs
in
bs_epoch
]
lrs
=
[(
lr
,
lr
*
2
),
(
lr
*
2
,
lr
/
4
),
(
lr
*
bs_scale
[
2
],
lr
/
10
*
bs_scale
[
2
]),
(
lr
/
10
*
bs_scale
[
2
],
lr
/
100
*
bs_scale
[
2
]),
(
lr
/
100
*
bs_scale
[
4
],
lr
/
1000
*
bs_scale
[
4
]),
lr
/
1000
*
bs_scale
[
4
]]
epochs
=
[(
0
,
7
),
(
7
,
13
),
(
13
,
22
),
(
22
,
25
),
(
25
,
28
)]
bs_epoch
=
[
bs
*
DEVICE_NUM
for
bs
in
[
224
,
224
,
96
,
96
,
50
]]
bs_scale
=
[
bs
*
1.0
/
bs_epoch
[
0
]
for
bs
in
bs_epoch
]
lrs
=
[(
lr
,
lr
*
2
),
(
lr
*
2
,
lr
/
4
),
(
lr
*
bs_scale
[
2
],
lr
/
10
*
bs_scale
[
2
]),
(
lr
/
10
*
bs_scale
[
2
],
lr
/
100
*
bs_scale
[
2
]),
(
lr
/
100
*
bs_scale
[
4
],
lr
/
1000
*
bs_scale
[
4
]),
lr
/
1000
*
bs_scale
[
4
]]
boundaries
,
values
=
lr_decay
(
lrs
,
epochs
,
bs_epoch
,
total_images
)
boundaries
,
values
=
lr_decay
(
lrs
,
epochs
,
bs_epoch
,
total_images
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
boundaries
,
values
=
values
),
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
boundaries
,
values
=
values
),
momentum
=
0.9
)
if
args
.
fp16
:
params_grads
=
optimizer
.
backward
(
avg_cost
)
master_params_grads
=
utils
.
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
args
.
scale_loss
)
optimizer
.
apply_gradients
(
master_params_grads
)
utils
.
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
utils
.
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
else
:
optimizer
.
minimize
(
avg_cost
)
...
...
@@ -164,35 +192,67 @@ def build_program(args, is_train, main_prog, startup_prog, py_reader_startup_pro
return
avg_cost
,
optimizer
,
[
batch_acc1
,
batch_acc5
],
pyreader
def
refresh_program
(
args
,
epoch
,
sz
,
trn_dir
,
bs
,
val_bs
,
need_update_start_prog
=
False
,
min_scale
=
0.08
,
rect_val
=
False
):
print
(
'refresh program: epoch: [%d], image size: [%d], trn_dir: [%s], batch_size:[%d]'
%
(
epoch
,
sz
,
trn_dir
,
bs
))
def
refresh_program
(
args
,
epoch
,
sz
,
trn_dir
,
bs
,
val_bs
,
need_update_start_prog
=
False
,
min_scale
=
0.08
,
rect_val
=
False
):
print
(
'refresh program: epoch: [%d], image size: [%d], trn_dir: [%s], batch_size:[%d]'
%
(
epoch
,
sz
,
trn_dir
,
bs
))
train_prog
=
fluid
.
Program
()
test_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
py_reader_startup_prog
=
fluid
.
Program
()
train_args
=
build_program
(
args
,
True
,
train_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
bs
,
min_scale
)
test_args
=
build_program
(
args
,
False
,
test_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
val_bs
,
min_scale
,
rect_val
=
rect_val
)
place
=
core
.
CUDAPlace
(
0
)
train_args
=
build_program
(
args
,
True
,
train_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
bs
,
min_scale
)
test_args
=
build_program
(
args
,
False
,
test_prog
,
startup_prog
,
py_reader_startup_prog
,
sz
,
trn_dir
,
val_bs
,
min_scale
,
rect_val
=
rect_val
)
place
=
fluid
.
CUDAPlace
(
0
)
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
py_reader_startup_prog
)
if
need_update_start_prog
:
startup_exe
.
run
(
startup_prog
)
conv2d_w_vars
=
[
var
for
var
in
startup_prog
.
global_block
().
vars
.
values
()
if
var
.
name
.
startswith
(
'conv2d_'
)]
conv2d_w_vars
=
[
var
for
var
in
startup_prog
.
global_block
().
vars
.
values
()
if
var
.
name
.
startswith
(
'conv2d_'
)
]
for
var
in
conv2d_w_vars
:
torch_w
=
torch
.
empty
(
var
.
shape
)
kaiming_np
=
torch
.
nn
.
init
.
kaiming_normal_
(
torch_w
,
mode
=
'fan_out'
,
nonlinearity
=
'relu'
).
numpy
()
kaiming_np
=
torch
.
nn
.
init
.
kaiming_normal_
(
torch_w
,
mode
=
'fan_out'
,
nonlinearity
=
'relu'
).
numpy
()
tensor
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
if
args
.
fp16
:
tensor
.
set
(
np
.
array
(
kaiming_np
,
dtype
=
"float16"
).
view
(
np
.
uint16
),
place
)
tensor
.
set
(
np
.
array
(
kaiming_np
,
dtype
=
"float16"
).
view
(
np
.
uint16
),
place
)
else
:
tensor
.
set
(
np
.
array
(
kaiming_np
,
dtype
=
"float32"
),
place
)
np_tensors
=
{}
np_tensors
[
"img_mean"
]
=
np
.
array
([
0.485
*
255.0
,
0.456
*
255.0
,
0.406
*
255.0
]).
astype
(
"float16"
if
args
.
fp16
else
"float32"
).
reshape
((
3
,
1
,
1
))
np_tensors
[
"img_std"
]
=
np
.
array
([
0.229
*
255.0
,
0.224
*
255.0
,
0.225
*
255.0
]).
astype
(
"float16"
if
args
.
fp16
else
"float32"
).
reshape
((
3
,
1
,
1
))
np_tensors
[
"img_mean"
]
=
np
.
array
(
[
0.485
*
255.0
,
0.456
*
255.0
,
0.406
*
255.0
]).
astype
(
"float16"
if
args
.
fp16
else
"float32"
).
reshape
((
3
,
1
,
1
))
np_tensors
[
"img_std"
]
=
np
.
array
(
[
0.229
*
255.0
,
0.224
*
255.0
,
0.225
*
255.0
]).
astype
(
"float16"
if
args
.
fp16
else
"float32"
).
reshape
((
3
,
1
,
1
))
for
vname
,
np_tensor
in
np_tensors
.
items
():
var
=
fluid
.
global_scope
().
find_var
(
vname
)
if
args
.
fp16
:
...
...
@@ -200,13 +260,13 @@ def refresh_program(args, epoch, sz, trn_dir, bs, val_bs, need_update_start_prog
else
:
var
.
get_tensor
().
set
(
np_tensor
,
place
)
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
args
.
num_threads
strategy
.
allow_op_delay
=
False
strategy
.
num_iteration_per_drop_scope
=
1
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
().
ReduceStrategy
.
AllReduce
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
(
).
ReduceStrategy
.
AllReduce
avg_loss
=
train_args
[
0
]
train_exe
=
fluid
.
ParallelExecutor
(
...
...
@@ -220,14 +280,25 @@ def refresh_program(args, epoch, sz, trn_dir, bs, val_bs, need_update_start_prog
return
train_args
,
test_args
,
test_prog
,
train_exe
,
test_exe
def
prepare_reader
(
epoch_id
,
train_py_reader
,
train_bs
,
val_bs
,
trn_dir
,
img_dim
,
min_scale
,
rect_val
):
def
prepare_reader
(
epoch_id
,
train_py_reader
,
train_bs
,
val_bs
,
trn_dir
,
img_dim
,
min_scale
,
rect_val
):
train_reader
=
torchvision_reader
.
train
(
traindir
=
"/data/imagenet/%strain"
%
trn_dir
,
sz
=
img_dim
,
min_scale
=
min_scale
,
shuffle_seed
=
epoch_id
+
1
)
train_py_reader
.
decorate_paddle_reader
(
paddle
.
batch
(
train_reader
,
batch_size
=
train_bs
))
traindir
=
"/data/imagenet/%strain"
%
trn_dir
,
sz
=
img_dim
,
min_scale
=
min_scale
,
shuffle_seed
=
epoch_id
+
1
)
train_py_reader
.
decorate_paddle_reader
(
paddle
.
batch
(
train_reader
,
batch_size
=
train_bs
))
test_reader
=
torchvision_reader
.
test
(
valdir
=
"/data/imagenet/%svalidation"
%
trn_dir
,
bs
=
val_bs
*
DEVICE_NUM
,
sz
=
img_dim
,
rect_val
=
rect_val
)
test_batched_reader
=
paddle
.
batch
(
test_reader
,
batch_size
=
val_bs
*
DEVICE_NUM
)
valdir
=
"/data/imagenet/%svalidation"
%
trn_dir
,
bs
=
val_bs
*
DEVICE_NUM
,
sz
=
img_dim
,
rect_val
=
rect_val
)
test_batched_reader
=
paddle
.
batch
(
test_reader
,
batch_size
=
val_bs
*
DEVICE_NUM
)
return
test_batched_reader
...
...
@@ -244,27 +315,49 @@ def train_parallel(args):
bs
=
224
val_bs
=
64
trn_dir
=
"sz/160/"
img_dim
=
128
min_scale
=
0.08
rect_val
=
False
img_dim
=
128
min_scale
=
0.08
rect_val
=
False
for
epoch_id
in
range
(
args
.
num_epochs
):
# refresh program
if
epoch_id
==
0
:
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch_id
,
sz
=
img_dim
,
trn_dir
=
trn_dir
,
bs
=
bs
,
val_bs
=
val_bs
,
need_update_start_prog
=
True
)
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch_id
,
sz
=
img_dim
,
trn_dir
=
trn_dir
,
bs
=
bs
,
val_bs
=
val_bs
,
need_update_start_prog
=
True
)
elif
epoch_id
==
13
:
#13
bs
=
96
trn_dir
=
"sz/352/"
img_dim
=
224
min_scale
=
0.087
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch_id
,
sz
=
img_dim
,
trn_dir
=
trn_dir
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
min_scale
)
trn_dir
=
"sz/352/"
img_dim
=
224
min_scale
=
0.087
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch_id
,
sz
=
img_dim
,
trn_dir
=
trn_dir
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
min_scale
)
elif
epoch_id
==
25
:
#25
bs
=
50
val_bs
=
8
trn_dir
=
""
img_dim
=
288
min_scale
=
0.5
rect_val
=
True
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch_id
,
sz
=
img_dim
,
trn_dir
=
trn_dir
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
min_scale
,
rect_val
=
rect_val
)
val_bs
=
8
trn_dir
=
""
img_dim
=
288
min_scale
=
0.5
rect_val
=
True
train_args
,
test_args
,
test_prog
,
exe
,
test_exe
=
refresh_program
(
args
,
epoch_id
,
sz
=
img_dim
,
trn_dir
=
trn_dir
,
bs
=
bs
,
val_bs
=
val_bs
,
min_scale
=
min_scale
,
rect_val
=
rect_val
)
else
:
pass
...
...
@@ -273,7 +366,15 @@ def train_parallel(args):
iters
=
0
start_time
=
time
.
time
()
train_py_reader
=
train_args
[
3
]
test_reader
=
prepare_reader
(
epoch_id
,
train_py_reader
,
bs
,
val_bs
,
trn_dir
,
img_dim
=
img_dim
,
min_scale
=
min_scale
,
rect_val
=
rect_val
)
test_reader
=
prepare_reader
(
epoch_id
,
train_py_reader
,
bs
,
val_bs
,
trn_dir
,
img_dim
=
img_dim
,
min_scale
=
min_scale
,
rect_val
=
rect_val
)
train_py_reader
.
start
()
# start pyreader
batch_start_time
=
time
.
time
()
while
True
:
...
...
@@ -304,20 +405,31 @@ def train_parallel(args):
if
should_print
:
fetched_data
=
[
np
.
mean
(
np
.
array
(
d
))
for
d
in
fetch_ret
]
print
(
"Epoch %d, batch %d, loss %s, accucacys: %s, learning_rate %s, py_reader queue_size: %d, avg batch time: %0.4f secs"
%
(
epoch_id
,
iters
,
fetched_data
[
0
],
fetched_data
[
1
:
-
1
],
fetched_data
[
-
1
],
train_py_reader
.
queue
.
size
(),
(
time
.
time
()
-
batch_start_time
)
*
1.0
/
args
.
log_period
))
print
(
"Epoch %d, batch %d, loss %s, accucacys: %s, learning_rate %s, py_reader queue_size: %d, avg batch time: %0.4f secs"
%
(
epoch_id
,
iters
,
fetched_data
[
0
],
fetched_data
[
1
:
-
1
],
fetched_data
[
-
1
],
train_py_reader
.
queue
.
size
(),
(
time
.
time
()
-
batch_start_time
)
*
1.0
/
args
.
log_period
))
batch_start_time
=
time
.
time
()
iters
+=
1
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
feed_list
=
[
test_prog
.
global_block
().
var
(
varname
)
for
varname
in
(
"image"
,
"label"
)]
test_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
fluid
.
CUDAPlace
(
0
))
test_ret
=
test_parallel
(
test_exe
,
test_args
,
args
,
test_reader
,
test_feeder
,
val_bs
)
feed_list
=
[
test_prog
.
global_block
().
var
(
varname
)
for
varname
in
(
"image"
,
"label"
)
]
test_feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
fluid
.
CUDAPlace
(
0
))
test_ret
=
test_parallel
(
test_exe
,
test_args
,
args
,
test_reader
,
test_feeder
,
val_bs
)
test_acc1
,
test_acc5
=
[
np
.
mean
(
np
.
array
(
v
))
for
v
in
test_ret
]
print
(
"Epoch: %d, Test Accuracy: %s, Spend %.2f hours
\n
"
%
(
epoch_id
,
[
test_acc1
,
test_acc5
],
(
time
.
time
()
-
over_all_start
)
/
3600
))
(
epoch_id
,
[
test_acc1
,
test_acc5
],
(
time
.
time
()
-
over_all_start
)
/
3600
))
if
np
.
mean
(
np
.
array
(
test_ret
[
1
]))
>
args
.
best_acc5
:
print
(
"Achieve the best top-1 acc %f, top-5 acc: %f"
%
(
test_acc1
,
test_acc5
))
print
(
"Achieve the best top-1 acc %f, top-5 acc: %f"
%
(
test_acc1
,
test_acc5
))
break
print
(
"total train time: "
,
time
.
time
()
-
over_all_start
)
...
...
PaddleRL/DeepQNetwork/play.py
浏览文件 @
e64bd9c4
...
...
@@ -44,7 +44,7 @@ if __name__ == '__main__':
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
inference_scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
[
predict_program
,
feed_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
args
.
model_path
,
exe
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录