diff --git a/PaddleCV/PaddleDetection/slim/quantization/README.md b/PaddleCV/PaddleDetection/slim/quantization/README.md index c6ff8ea1ac307a88fd6dcee1f42bff0b0dae1ff6..d451e959a8828c24fcafb9ac52b8c5a2a3ce8de5 100644 --- a/PaddleCV/PaddleDetection/slim/quantization/README.md +++ b/PaddleCV/PaddleDetection/slim/quantization/README.md @@ -235,8 +235,11 @@ FP32模型可使用PaddleLite进行加载预测,可参见教程[Paddle-Lite如 |---|---|---|---|---| |baseline|- |76.2%|- |-| |abs_max|abs_max|- |- |-| -|abs_max|moving_average_abs_max|- |- |-| +|abs_max|moving_average_abs_max|74.48%|10.99|3348.68| |channel_wise_abs_max|abs_max|- |- |-| +> 注: lite端运行手机信息:Android手机, +型号:BKL-AL20,运行内存RAM:4GB 6GB,CPU核心数:八核 4*A73 2.36GHz+4*A53 1.8GHz,操作系统:EMUI 8.0,CPU品牌:麒麟970 + ## FAQ diff --git a/PaddleSlim/classification/quantization/README.md b/PaddleSlim/classification/quantization/README.md index 6bbe49df06c681198b9dda9165fd8ad4b04d1038..1d7f00cec38e2c7e94b466cead1852e49b4b5a32 100644 --- a/PaddleSlim/classification/quantization/README.md +++ b/PaddleSlim/classification/quantization/README.md @@ -196,13 +196,16 @@ with fluid.name_scope('skip_quant'): >当前release的结果并非超参调优后的最好结果,仅做示例参考,后续我们会优化当前结果。 +>注: lite端运行手机信息:Android手机, +型号:BKL-AL20,运行内存RAM:4GB 6GB,CPU核心数:八核 4*A73 2.36GHz+4*A53 1.8GHz,操作系统:EMUI 8.0,CPU品牌:麒麟970 + ### MobileNetV1 | weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)| 模型下载| |---|---|---|---|---| ---| |baseline|- |70.99%/89.68%|- |-| [下载模型](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar)| |abs_max|abs_max|70.74%/89.55% |- |-| [下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fmobilenetv1_w_abs_a_abs_7074_8955.tar.gz)| -|abs_max|moving_average_abs_max|70.89%/89.67% |- |-| [下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fmobilenetv1_w_abs_a_move_7089_8967.tar.gz)| +|abs_max|moving_average_abs_max|70.89%/89.67% |5.18|37.65| [下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fmobilenetv1_w_abs_a_move_7089_8967.tar.gz)| |channel_wise_abs_max|abs_max|70.93%/89.65% |- |-|[下载模型](https://paddle-slim-models.bj.bcebos.com/quantization%2Fmobilenetv1_w_chan_a_abs_7093_8965.tar.gz)| >训练超参: @@ -223,7 +226,7 @@ fluid.optimizer.Momentum(momentum=0.9, |---|---|---|---|---| |baseline|- |72.15%/90.65%|- |-| |abs_max|abs_max|- |- |-| -|abs_max|moving_average_abs_max|- |- |-| +|abs_max|moving_average_abs_max|72.19%/90.71%|9.43 |56.09| |channel_wise_abs_max|abs_max|- |- |-| >训练超参: @@ -239,12 +242,12 @@ fluid.optimizer.Momentum(momentum=0.9, 8卡,batch size 1024,epoch 30, 挑选好的结果 ### ResNet34 -| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|模型下载| +| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)| |---|---|---|---|---|---| -|baseline|- |74.57%/92.14%|- |-|-| -|abs_max|abs_max||- |-|-| -|abs_max|moving_average_abs_max||- |-|-| -|channel_wise_abs_max|abs_max||- |-| -| +|baseline|- |74.57%/92.14%|- |-| +|abs_max|abs_max|-|- |-| +|abs_max|moving_average_abs_max|74.63%/92.17%|7.20|392.59| +|channel_wise_abs_max|abs_max|-|- |-| >训练超参: