提交 e56ead99 编写于 作者: C chengyao

fix codestyle

上级 2d392828
...@@ -9,6 +9,7 @@ import os ...@@ -9,6 +9,7 @@ import os
import json import json
import random import random
def to_lodtensor(data, place): def to_lodtensor(data, place):
""" """
convert to LODtensor convert to LODtensor
...@@ -45,20 +46,22 @@ def data2tensor(data, place): ...@@ -45,20 +46,22 @@ def data2tensor(data, place):
""" """
data2tensor data2tensor
""" """
input_seq = to_lodtensor(map(lambda x:x[0], data), place) input_seq = to_lodtensor(map(lambda x: x[0], data), place)
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1]) y_data = y_data.reshape([-1, 1])
return {"words": input_seq, "label": y_data} return {"words": input_seq, "label": y_data}
def data2pred(data, place): def data2pred(data, place):
""" """
data2tensor data2tensor
""" """
input_seq = to_lodtensor(map(lambda x:x[0], data), place) input_seq = to_lodtensor(map(lambda x: x[0], data), place)
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1]) y_data = y_data.reshape([-1, 1])
return {"words": input_seq} return {"words": input_seq}
def load_dict(vocab): def load_dict(vocab):
""" """
Load dict from vocab Load dict from vocab
...@@ -80,6 +83,7 @@ def save_dict(word_dict, vocab): ...@@ -80,6 +83,7 @@ def save_dict(word_dict, vocab):
outstr = ("%s\t%s\n" % (k, v)).encode("gb18030") outstr = ("%s\t%s\n" % (k, v)).encode("gb18030")
fout.write(outstr) fout.write(outstr)
def build_dict(fname): def build_dict(fname):
""" """
build word dict using trainset build word dict using trainset
...@@ -88,7 +92,8 @@ def build_dict(fname): ...@@ -88,7 +92,8 @@ def build_dict(fname):
with open(fname, "r") as fin: with open(fname, "r") as fin:
for line in fin: for line in fin:
try: try:
words = line.strip("\r\n").decode("gb18030").split("\t")[1].split(" ") words = line.strip("\r\n").decode("gb18030").split("\t")[
1].split(" ")
except: except:
sys.stderr.write("[warning] build_dict: decode error\n") sys.stderr.write("[warning] build_dict: decode error\n")
continue continue
...@@ -133,7 +138,10 @@ def data_reader(fname, word_dict, is_dir=False): ...@@ -133,7 +138,10 @@ def data_reader(fname, word_dict, is_dir=False):
continue continue
label = int(cols[0]) label = int(cols[0])
wids = [word_dict[x] if x in word_dict else unk_id for x in cols[1].split(" ")] wids = [
word_dict[x] if x in word_dict else unk_id
for x in cols[1].split(" ")
]
all_data.append((wids, label)) all_data.append((wids, label))
random.shuffle(all_data) random.shuffle(all_data)
...@@ -145,7 +153,8 @@ def data_reader(fname, word_dict, is_dir=False): ...@@ -145,7 +153,8 @@ def data_reader(fname, word_dict, is_dir=False):
return reader return reader
def scdb_train_data(train_dir="scdb_data/train_set/corpus.train.seg", w_dict=None): def scdb_train_data(train_dir="scdb_data/train_set/corpus.train.seg",
w_dict=None):
""" """
create train data create train data
""" """
...@@ -160,7 +169,8 @@ def scdb_test_data(test_file, w_dict): ...@@ -160,7 +169,8 @@ def scdb_test_data(test_file, w_dict):
return data_reader(test_file, w_dict) return data_reader(test_file, w_dict)
def bow_net(data, label, def bow_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -169,19 +179,12 @@ def bow_net(data, label, ...@@ -169,19 +179,12 @@ def bow_net(data, label,
""" """
bow net bow net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
size=[dict_dim, emb_dim]) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bow = fluid.layers.sequence_pool(
input=emb,
pool_type='sum')
bow_tanh = fluid.layers.tanh(bow) bow_tanh = fluid.layers.tanh(bow)
fc_1 = fluid.layers.fc(input=bow_tanh, fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
size=hid_dim, act = "tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
size=hid_dim2, act = "tanh")
prediction = fluid.layers.fc(input=[fc_2],
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label) acc = fluid.layers.accuracy(input=prediction, label=label)
...@@ -189,7 +192,8 @@ def bow_net(data, label, ...@@ -189,7 +192,8 @@ def bow_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def cnn_net(data, label, def cnn_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -199,21 +203,18 @@ def cnn_net(data, label, ...@@ -199,21 +203,18 @@ def cnn_net(data, label,
""" """
conv net conv net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
size=[dict_dim, emb_dim])
conv_3 = fluid.nets.sequence_conv_pool(input=emb, conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim, num_filters=hid_dim,
filter_size=win_size, filter_size=win_size,
act="tanh", act="tanh",
pool_type="max") pool_type="max")
fc_1 = fluid.layers.fc(input=[conv_3], fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
size=hid_dim2)
prediction = fluid.layers.fc(input=[fc_1], prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax")
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label) acc = fluid.layers.accuracy(input=prediction, label=label)
...@@ -221,7 +222,8 @@ def cnn_net(data, label, ...@@ -221,7 +222,8 @@ def cnn_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def lstm_net(data, label, def lstm_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -231,29 +233,22 @@ def lstm_net(data, label, ...@@ -231,29 +233,22 @@ def lstm_net(data, label,
""" """
lstm net lstm net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim], size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr)) param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4, act='tanh')
size=hid_dim * 4,
act='tanh')
lstm_h, c = fluid.layers.dynamic_lstm(input=fc0, lstm_h, c = fluid.layers.dynamic_lstm(
size=hid_dim * 4, input=fc0, size=hid_dim * 4, is_reverse=False)
is_reverse=False)
lstm_max = fluid.layers.sequence_pool(input=lstm_h, lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
pool_type='max')
lstm_max_tanh = fluid.layers.tanh(lstm_max) lstm_max_tanh = fluid.layers.tanh(lstm_max)
fc1 = fluid.layers.fc(input=lstm_max_tanh, fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
size=hid_dim2,
act='tanh')
prediction = fluid.layers.fc(input=fc1, prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
...@@ -262,7 +257,8 @@ def lstm_net(data, label, ...@@ -262,7 +257,8 @@ def lstm_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def bilstm_net(data, label, def bilstm_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -272,25 +268,20 @@ def bilstm_net(data, label, ...@@ -272,25 +268,20 @@ def bilstm_net(data, label,
""" """
lstm net lstm net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim], size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr)) param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4, act='tanh')
size=hid_dim * 4,
act='tanh')
rfc0 = fluid.layers.fc(input=emb, rfc0 = fluid.layers.fc(input=emb, size=hid_dim * 4, act='tanh')
size=hid_dim * 4,
act='tanh')
lstm_h, c = fluid.layers.dynamic_lstm(input=fc0, lstm_h, c = fluid.layers.dynamic_lstm(
size=hid_dim * 4, input=fc0, size=hid_dim * 4, is_reverse=False)
is_reverse=False)
rlstm_h, c = fluid.layers.dynamic_lstm(input=rfc0, rlstm_h, c = fluid.layers.dynamic_lstm(
size=hid_dim * 4, input=rfc0, size=hid_dim * 4, is_reverse=True)
is_reverse=True)
lstm_last = fluid.layers.sequence_last_step(input=lstm_h) lstm_last = fluid.layers.sequence_last_step(input=lstm_h)
rlstm_last = fluid.layers.sequence_last_step(input=rlstm_h) rlstm_last = fluid.layers.sequence_last_step(input=rlstm_h)
...@@ -300,13 +291,9 @@ def bilstm_net(data, label, ...@@ -300,13 +291,9 @@ def bilstm_net(data, label,
lstm_concat = fluid.layers.concat(input=[lstm_last, rlstm_last], axis=1) lstm_concat = fluid.layers.concat(input=[lstm_last, rlstm_last], axis=1)
fc1 = fluid.layers.fc(input=lstm_concat, fc1 = fluid.layers.fc(input=lstm_concat, size=hid_dim2, act='tanh')
size=hid_dim2,
act='tanh')
prediction = fluid.layers.fc(input=fc1, prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
...@@ -315,7 +302,8 @@ def bilstm_net(data, label, ...@@ -315,7 +302,8 @@ def bilstm_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def gru_net(data, label, def gru_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -325,28 +313,21 @@ def gru_net(data, label, ...@@ -325,28 +313,21 @@ def gru_net(data, label,
""" """
gru net gru net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim], size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr)) param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, fc0 = fluid.layers.fc(input=emb, size=hid_dim * 3)
size=hid_dim * 3)
gru_h = fluid.layers.dynamic_gru(input=fc0, gru_h = fluid.layers.dynamic_gru(input=fc0, size=hid_dim, is_reverse=False)
size=hid_dim,
is_reverse=False)
gru_max = fluid.layers.sequence_pool(input=gru_h, gru_max = fluid.layers.sequence_pool(input=gru_h, pool_type='max')
pool_type='max')
gru_max_tanh = fluid.layers.tanh(gru_max) gru_max_tanh = fluid.layers.tanh(gru_max)
fc1 = fluid.layers.fc(input=gru_max_tanh, fc1 = fluid.layers.fc(input=gru_max_tanh, size=hid_dim2, act='tanh')
size=hid_dim2,
act='tanh')
prediction = fluid.layers.fc(input=fc1, prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
...@@ -354,9 +335,8 @@ def gru_net(data, label, ...@@ -354,9 +335,8 @@ def gru_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def infer(test_reader,
use_cuda, def infer(test_reader, use_cuda, model_path=None):
model_path=None):
""" """
inference function inference function
""" """
...@@ -379,7 +359,7 @@ def infer(test_reader, ...@@ -379,7 +359,7 @@ def infer(test_reader,
for data in each_test_reader(): for data in each_test_reader():
pred = exe.run(inference_program, pred = exe.run(inference_program,
feed = data2pred(data, place), feed=data2pred(data, place),
fetch_list=fetch_targets, fetch_list=fetch_targets,
return_numpy=True) return_numpy=True)
...@@ -410,7 +390,8 @@ def infer(test_reader, ...@@ -410,7 +390,8 @@ def infer(test_reader,
class2_acc = sum(class2_list) / len(class2_list) class2_acc = sum(class2_list) / len(class2_list)
class3_acc = sum(class3_list) / len(class3_list) class3_acc = sum(class3_list) / len(class3_list)
print("[test info] model_path: %s, class2_acc: %f, class3_acc: %f" % (model_path, class2_acc, class3_acc)) print("[test info] model_path: %s, class2_acc: %f, class3_acc: %f" %
(model_path, class2_acc, class3_acc))
def start_train(train_reader, def start_train(train_reader,
...@@ -427,18 +408,11 @@ def start_train(train_reader, ...@@ -427,18 +408,11 @@ def start_train(train_reader,
train network train network
""" """
data = fluid.layers.data( data = fluid.layers.data(
name="words", name="words", shape=[1], dtype="int64", lod_level=1)
shape=[1],
dtype="int64",
lod_level=1)
label = fluid.layers.data( label = fluid.layers.data(name="label", shape=[1], dtype="int64")
name="label",
shape=[1],
dtype="int64")
cost, acc, pred = network( cost, acc, pred = network(data, label, len(word_dict) + 1)
data, label, len(word_dict) + 1)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=lr) sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=lr)
sgd_optimizer.minimize(cost) sgd_optimizer.minimize(cost)
...@@ -462,15 +436,13 @@ def start_train(train_reader, ...@@ -462,15 +436,13 @@ def start_train(train_reader,
avg_cost = total_cost / total_count avg_cost = total_cost / total_count
avg_acc = total_acc / total_count avg_acc = total_acc / total_count
print("[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f" % (pass_id, avg_acc, avg_cost)) print("[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f" %
(pass_id, avg_acc, avg_cost))
gpu_place = fluid.CUDAPlace(0) gpu_place = fluid.CUDAPlace(0)
save_exe = fluid.Executor(gpu_place) save_exe = fluid.Executor(gpu_place)
epoch_model = save_dirname + "/" + "epoch" + str(pass_id) epoch_model = save_dirname + "/" + "epoch" + str(pass_id)
fluid.io.save_inference_model( fluid.io.save_inference_model(epoch_model, ["words"], pred, save_exe)
epoch_model,
["words"],
pred, save_exe)
infer(test_reader, False, epoch_model) infer(test_reader, False, epoch_model)
...@@ -500,9 +472,17 @@ def train_net(vocab="./thirdparty/train.vocab", ...@@ -500,9 +472,17 @@ def train_net(vocab="./thirdparty/train.vocab",
paddle.dataset.imdb.test(w_dict), buf_size=50000), paddle.dataset.imdb.test(w_dict), buf_size=50000),
batch_size=128) batch_size=128)
test_reader = [test_reader] test_reader = [test_reader]
start_train(train_reader, test_reader, w_dict, bilstm_net, use_cuda=True, start_train(
parallel=False, save_dirname="scdb_bilstm_model", lr=0.05, train_reader,
pass_num=10, batch_size=256) test_reader,
w_dict,
bilstm_net,
use_cuda=True,
parallel=False,
save_dirname="scdb_bilstm_model",
lr=0.05,
pass_num=10,
batch_size=256)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -9,6 +9,7 @@ import os ...@@ -9,6 +9,7 @@ import os
import json import json
import random import random
def to_lodtensor(data, place): def to_lodtensor(data, place):
""" """
convert to LODtensor convert to LODtensor
...@@ -45,20 +46,22 @@ def data2tensor(data, place): ...@@ -45,20 +46,22 @@ def data2tensor(data, place):
""" """
data2tensor data2tensor
""" """
input_seq = to_lodtensor(map(lambda x:x[0], data), place) input_seq = to_lodtensor(map(lambda x: x[0], data), place)
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1]) y_data = y_data.reshape([-1, 1])
return {"words": input_seq, "label": y_data} return {"words": input_seq, "label": y_data}
def data2pred(data, place): def data2pred(data, place):
""" """
data2tensor data2tensor
""" """
input_seq = to_lodtensor(map(lambda x:x[0], data), place) input_seq = to_lodtensor(map(lambda x: x[0], data), place)
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1]) y_data = y_data.reshape([-1, 1])
return {"words": input_seq} return {"words": input_seq}
def load_dict(vocab): def load_dict(vocab):
""" """
Load dict from vocab Load dict from vocab
...@@ -80,6 +83,7 @@ def save_dict(word_dict, vocab): ...@@ -80,6 +83,7 @@ def save_dict(word_dict, vocab):
outstr = ("%s\t%s\n" % (k, v)).encode("gb18030") outstr = ("%s\t%s\n" % (k, v)).encode("gb18030")
fout.write(outstr) fout.write(outstr)
def build_dict(fname): def build_dict(fname):
""" """
build word dict using trainset build word dict using trainset
...@@ -88,7 +92,8 @@ def build_dict(fname): ...@@ -88,7 +92,8 @@ def build_dict(fname):
with open(fname, "r") as fin: with open(fname, "r") as fin:
for line in fin: for line in fin:
try: try:
words = line.strip("\r\n").decode("gb18030").split("\t")[1].split(" ") words = line.strip("\r\n").decode("gb18030").split("\t")[
1].split(" ")
except: except:
sys.stderr.write("[warning] build_dict: decode error\n") sys.stderr.write("[warning] build_dict: decode error\n")
continue continue
...@@ -133,7 +138,10 @@ def data_reader(fname, word_dict, is_dir=False): ...@@ -133,7 +138,10 @@ def data_reader(fname, word_dict, is_dir=False):
continue continue
label = int(cols[0]) label = int(cols[0])
wids = [word_dict[x] if x in word_dict else unk_id for x in cols[1].split(" ")] wids = [
word_dict[x] if x in word_dict else unk_id
for x in cols[1].split(" ")
]
all_data.append((wids, label)) all_data.append((wids, label))
random.shuffle(all_data) random.shuffle(all_data)
...@@ -145,7 +153,8 @@ def data_reader(fname, word_dict, is_dir=False): ...@@ -145,7 +153,8 @@ def data_reader(fname, word_dict, is_dir=False):
return reader return reader
def scdb_train_data(train_dir="scdb_data/train_set/corpus.train.seg", w_dict=None): def scdb_train_data(train_dir="scdb_data/train_set/corpus.train.seg",
w_dict=None):
""" """
create train data create train data
""" """
...@@ -160,7 +169,8 @@ def scdb_test_data(test_file, w_dict): ...@@ -160,7 +169,8 @@ def scdb_test_data(test_file, w_dict):
return data_reader(test_file, w_dict) return data_reader(test_file, w_dict)
def bow_net(data, label, def bow_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -169,19 +179,12 @@ def bow_net(data, label, ...@@ -169,19 +179,12 @@ def bow_net(data, label,
""" """
bow net bow net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
size=[dict_dim, emb_dim]) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bow = fluid.layers.sequence_pool(
input=emb,
pool_type='sum')
bow_tanh = fluid.layers.tanh(bow) bow_tanh = fluid.layers.tanh(bow)
fc_1 = fluid.layers.fc(input=bow_tanh, fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
size=hid_dim, act = "tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
size=hid_dim2, act = "tanh")
prediction = fluid.layers.fc(input=[fc_2],
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label) acc = fluid.layers.accuracy(input=prediction, label=label)
...@@ -189,7 +192,8 @@ def bow_net(data, label, ...@@ -189,7 +192,8 @@ def bow_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def cnn_net(data, label, def cnn_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -199,21 +203,18 @@ def cnn_net(data, label, ...@@ -199,21 +203,18 @@ def cnn_net(data, label,
""" """
conv net conv net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
size=[dict_dim, emb_dim])
conv_3 = fluid.nets.sequence_conv_pool(input=emb, conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim, num_filters=hid_dim,
filter_size=win_size, filter_size=win_size,
act="tanh", act="tanh",
pool_type="max") pool_type="max")
fc_1 = fluid.layers.fc(input=[conv_3], fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
size=hid_dim2)
prediction = fluid.layers.fc(input=[fc_1], prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax")
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label) acc = fluid.layers.accuracy(input=prediction, label=label)
...@@ -221,7 +222,8 @@ def cnn_net(data, label, ...@@ -221,7 +222,8 @@ def cnn_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def lstm_net(data, label, def lstm_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -231,29 +233,22 @@ def lstm_net(data, label, ...@@ -231,29 +233,22 @@ def lstm_net(data, label,
""" """
lstm net lstm net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim], size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr)) param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4, act='tanh')
size=hid_dim * 4,
act='tanh')
lstm_h, c = fluid.layers.dynamic_lstm(input=fc0, lstm_h, c = fluid.layers.dynamic_lstm(
size=hid_dim * 4, input=fc0, size=hid_dim * 4, is_reverse=False)
is_reverse=False)
lstm_max = fluid.layers.sequence_pool(input=lstm_h, lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
pool_type='max')
lstm_max_tanh = fluid.layers.tanh(lstm_max) lstm_max_tanh = fluid.layers.tanh(lstm_max)
fc1 = fluid.layers.fc(input=lstm_max_tanh, fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
size=hid_dim2,
act='tanh')
prediction = fluid.layers.fc(input=fc1, prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
...@@ -262,7 +257,8 @@ def lstm_net(data, label, ...@@ -262,7 +257,8 @@ def lstm_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def bilstm_net(data, label, def bilstm_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -272,25 +268,20 @@ def bilstm_net(data, label, ...@@ -272,25 +268,20 @@ def bilstm_net(data, label,
""" """
lstm net lstm net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim], size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr)) param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4, act='tanh')
size=hid_dim * 4,
act='tanh')
rfc0 = fluid.layers.fc(input=emb, rfc0 = fluid.layers.fc(input=emb, size=hid_dim * 4, act='tanh')
size=hid_dim * 4,
act='tanh')
lstm_h, c = fluid.layers.dynamic_lstm(input=fc0, lstm_h, c = fluid.layers.dynamic_lstm(
size=hid_dim * 4, input=fc0, size=hid_dim * 4, is_reverse=False)
is_reverse=False)
rlstm_h, c = fluid.layers.dynamic_lstm(input=rfc0, rlstm_h, c = fluid.layers.dynamic_lstm(
size=hid_dim * 4, input=rfc0, size=hid_dim * 4, is_reverse=True)
is_reverse=True)
lstm_last = fluid.layers.sequence_last_step(input=lstm_h) lstm_last = fluid.layers.sequence_last_step(input=lstm_h)
rlstm_last = fluid.layers.sequence_last_step(input=rlstm_h) rlstm_last = fluid.layers.sequence_last_step(input=rlstm_h)
...@@ -300,13 +291,9 @@ def bilstm_net(data, label, ...@@ -300,13 +291,9 @@ def bilstm_net(data, label,
lstm_concat = fluid.layers.concat(input=[lstm_last, rlstm_last], axis=1) lstm_concat = fluid.layers.concat(input=[lstm_last, rlstm_last], axis=1)
fc1 = fluid.layers.fc(input=lstm_concat, fc1 = fluid.layers.fc(input=lstm_concat, size=hid_dim2, act='tanh')
size=hid_dim2,
act='tanh')
prediction = fluid.layers.fc(input=fc1, prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
...@@ -315,7 +302,8 @@ def bilstm_net(data, label, ...@@ -315,7 +302,8 @@ def bilstm_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def gru_net(data, label, def gru_net(data,
label,
dict_dim, dict_dim,
emb_dim=128, emb_dim=128,
hid_dim=128, hid_dim=128,
...@@ -325,28 +313,21 @@ def gru_net(data, label, ...@@ -325,28 +313,21 @@ def gru_net(data, label,
""" """
gru net gru net
""" """
emb = fluid.layers.embedding(input=data, emb = fluid.layers.embedding(
input=data,
size=[dict_dim, emb_dim], size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(learning_rate=emb_lr)) param_attr=fluid.ParamAttr(learning_rate=emb_lr))
fc0 = fluid.layers.fc(input=emb, fc0 = fluid.layers.fc(input=emb, size=hid_dim * 3)
size=hid_dim * 3)
gru_h = fluid.layers.dynamic_gru(input=fc0, gru_h = fluid.layers.dynamic_gru(input=fc0, size=hid_dim, is_reverse=False)
size=hid_dim,
is_reverse=False)
gru_max = fluid.layers.sequence_pool(input=gru_h, gru_max = fluid.layers.sequence_pool(input=gru_h, pool_type='max')
pool_type='max')
gru_max_tanh = fluid.layers.tanh(gru_max) gru_max_tanh = fluid.layers.tanh(gru_max)
fc1 = fluid.layers.fc(input=gru_max_tanh, fc1 = fluid.layers.fc(input=gru_max_tanh, size=hid_dim2, act='tanh')
size=hid_dim2,
act='tanh')
prediction = fluid.layers.fc(input=fc1, prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label) cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
...@@ -355,9 +336,7 @@ def gru_net(data, label, ...@@ -355,9 +336,7 @@ def gru_net(data, label,
return avg_cost, acc, prediction return avg_cost, acc, prediction
def infer(test_reader, def infer(test_reader, use_cuda, model_path=None):
use_cuda,
model_path=None):
""" """
inference function inference function
""" """
...@@ -380,7 +359,7 @@ def infer(test_reader, ...@@ -380,7 +359,7 @@ def infer(test_reader,
for data in each_test_reader(): for data in each_test_reader():
pred = exe.run(inference_program, pred = exe.run(inference_program,
feed = data2pred(data, place), feed=data2pred(data, place),
fetch_list=fetch_targets, fetch_list=fetch_targets,
return_numpy=True) return_numpy=True)
...@@ -411,7 +390,8 @@ def infer(test_reader, ...@@ -411,7 +390,8 @@ def infer(test_reader,
class2_acc = sum(class2_list) / len(class2_list) class2_acc = sum(class2_list) / len(class2_list)
class3_acc = sum(class3_list) / len(class3_list) class3_acc = sum(class3_list) / len(class3_list)
print("[test info] model_path: %s, class2_acc: %f, class3_acc: %f" % (model_path, class2_acc, class3_acc)) print("[test info] model_path: %s, class2_acc: %f, class3_acc: %f" %
(model_path, class2_acc, class3_acc))
def start_train(train_reader, def start_train(train_reader,
...@@ -428,18 +408,11 @@ def start_train(train_reader, ...@@ -428,18 +408,11 @@ def start_train(train_reader,
train network train network
""" """
data = fluid.layers.data( data = fluid.layers.data(
name="words", name="words", shape=[1], dtype="int64", lod_level=1)
shape=[1],
dtype="int64",
lod_level=1)
label = fluid.layers.data( label = fluid.layers.data(name="label", shape=[1], dtype="int64")
name="label",
shape=[1],
dtype="int64")
cost, acc, pred = network( cost, acc, pred = network(data, label, len(word_dict) + 1)
data, label, len(word_dict) + 1)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=lr) sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=lr)
sgd_optimizer.minimize(cost) sgd_optimizer.minimize(cost)
...@@ -462,13 +435,11 @@ def start_train(train_reader, ...@@ -462,13 +435,11 @@ def start_train(train_reader,
avg_cost = total_cost / data_count avg_cost = total_cost / data_count
avg_acc = total_acc / data_count avg_acc = total_acc / data_count
print("[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f" % (pass_id, avg_acc, avg_cost)) print("[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f" %
(pass_id, avg_acc, avg_cost))
epoch_model = save_dirname + "/" + "epoch" + str(pass_id) epoch_model = save_dirname + "/" + "epoch" + str(pass_id)
fluid.io.save_inference_model( fluid.io.save_inference_model(epoch_model, ["words"], pred, exe)
epoch_model,
["words"],
pred, exe)
infer(test_reader, False, epoch_model) infer(test_reader, False, epoch_model)
...@@ -476,18 +447,25 @@ def train_net(vocab="./thirdparty/train.vocab", ...@@ -476,18 +447,25 @@ def train_net(vocab="./thirdparty/train.vocab",
train_dir="./train", train_dir="./train",
test_list=["car", "spot", "weibo", "lbs"]): test_list=["car", "spot", "weibo", "lbs"]):
w_dict = scdb_word_dict(vocab=vocab) w_dict = scdb_word_dict(vocab=vocab)
test_files = [ "./thirdparty" + os.sep + f for f in test_list] test_files = ["./thirdparty" + os.sep + f for f in test_list]
train_reader = paddle.batch( train_reader = paddle.batch(
scdb_train_data(train_dir, w_dict), scdb_train_data(train_dir, w_dict), batch_size=256)
batch_size = 256)
test_reader = [paddle.batch(scdb_test_data(test_file, w_dict), batch_size = 50) \ test_reader = [paddle.batch(scdb_test_data(test_file, w_dict), batch_size = 50) \
for test_file in test_files] for test_file in test_files]
start_train(train_reader, test_reader, w_dict, bow_net, use_cuda=False, start_train(
parallel=False, save_dirname="scdb_bow_model", lr=0.002, train_reader,
pass_num=10, batch_size=256) test_reader,
w_dict,
bow_net,
use_cuda=False,
parallel=False,
save_dirname="scdb_bow_model",
lr=0.002,
pass_num=10,
batch_size=256)
if __name__ == "__main__": if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册