提交 e23964cf 编写于 作者: D Dang Qingqing

Enable ParallelExecutor in SSD-MobileNet and Refine code.

上级 6fa8a94b
......@@ -60,4 +60,5 @@ def prepare_filelist(devkit_dir, years, output_dir):
ftest.write(item[0] + ' ' + item[1] + '\n')
prepare_filelist(devkit_dir, years, '.')
if __name__ == '__main__':
prepare_filelist(devkit_dir, years, '.')
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR"
# Download the data.
echo "Downloading..."
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
# Extract the data.
echo "Extractint..."
tar -xf VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
echo "Creating data lists..."
python create_list.py
import paddle.v2 as paddle
import paddle.fluid as fluid
import numpy as np
# From npy
def load_vars():
vars = {}
name_map = {}
with open('./ssd_mobilenet_v1_coco/names.map', 'r') as map_file:
for param in map_file:
fd_name, tf_name = param.strip().split('\t')
name_map[fd_name] = tf_name
tf_vars = np.load(
'./ssd_mobilenet_v1_coco/ssd_mobilenet_v1_coco_2017_11_17.npy').item()
for fd_name in name_map:
tf_name = name_map[fd_name]
tf_var = tf_vars[tf_name]
if len(tf_var.shape) == 4 and 'depthwise' in tf_name:
vars[fd_name] = np.transpose(tf_var, (2, 3, 0, 1))
elif len(tf_var.shape) == 4:
vars[fd_name] = np.transpose(tf_var, (3, 2, 0, 1))
else:
vars[fd_name] = tf_var
return vars
def load_and_set_vars(place):
vars = load_vars()
for k, v in vars.items():
t = fluid.global_scope().find_var(k).get_tensor()
#print(np.array(t).shape, v.shape, k)
assert np.array(t).shape == v.shape
t.set(v, place)
# From Paddle V1
def load_paddlev1_vars(place):
vars = {}
name_map = {}
with open('./caffe2paddle/names.map', 'r') as map_file:
for param in map_file:
fd_name, tf_name = param.strip().split('\t')
name_map[fd_name] = tf_name
from operator import mul
def load(file_name, shape):
with open(file_name, 'rb') as f:
f.read(16)
arr = np.fromfile(f, dtype=np.float32)
#print(arr.size, reduce(mul, shape), file_name)
assert arr.size == reduce(mul, shape)
return arr.reshape(shape)
for fd_name in name_map:
v1_name = name_map[fd_name]
t = fluid.global_scope().find_var(fd_name).get_tensor()
shape = np.array(t).shape
v1_var = load('./caffe2paddle/' + v1_name, shape)
t.set(v1_var, place)
if __name__ == "__main__":
load_vars()
......@@ -13,7 +13,7 @@ def conv_bn(input,
num_groups=1,
act='relu',
use_cudnn=True):
parameter_attr = ParamAttr(initializer=MSRA())
parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
......@@ -25,11 +25,9 @@ def conv_bn(input,
use_cudnn=use_cudnn,
param_attr=parameter_attr,
bias_attr=False)
#parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
#bias_attr = ParamAttr(learning_rate=0.2)
return fluid.layers.batch_norm(input=conv, act=act, epsilon=0.00001)
#param_attr=parameter_attr,
#bias_attr=bias_attr)
parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
bias_attr = ParamAttr(learning_rate=0.2)
return fluid.layers.batch_norm(input=conv, act=act)
def depthwise_separable(input, num_filters1, num_filters2, num_groups, stride,
......
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR"
# Download the data.
echo "Downloading..."
wget http://paddlemodels.bj.bcebos.com/ssd_mobilenet_coco.tar.gz
echo "Extractint..."
tar -xf ssd_mobilenet_coco.tar.gz
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR"
# Download the data.
echo "Downloading..."
wget http://paddlemodels.bj.bcebos.com/mobilenet_imagenet.tar.gz
echo "Extractint..."
tar -xf ssd_mobilenet_imagenet.tar.gz
......@@ -23,10 +23,6 @@ import os
import time
import copy
# cocoapi
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
class Settings(object):
def __init__(self, dataset, toy, data_dir, label_file, resize_h, resize_w,
......@@ -101,6 +97,10 @@ class Settings(object):
def _reader_creator(settings, file_list, mode, shuffle):
def reader():
if settings.dataset == 'coco':
# cocoapi
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
coco = COCO(file_list)
image_ids = coco.getImgIds()
images = coco.loadImgs(image_ids)
......@@ -295,6 +295,7 @@ def draw_bounding_box_on_image(image,
def train(settings, file_list, shuffle=True):
file_list = os.path.join(settings.data_dir, file_list)
if settings.dataset == 'coco':
train_settings = copy.copy(settings)
if '2014' in file_list:
......@@ -302,13 +303,13 @@ def train(settings, file_list, shuffle=True):
elif '2017' in file_list:
sub_dir = "train2017"
train_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
file_list = os.path.join(settings.data_dir, file_list)
return _reader_creator(train_settings, file_list, 'train', shuffle)
elif settings.dataset == 'pascalvoc':
return _reader_creator(settings, file_list, 'train', shuffle)
def test(settings, file_list):
file_list = os.path.join(settings.data_dir, file_list)
if settings.dataset == 'coco':
test_settings = copy.copy(settings)
if '2014' in file_list:
......@@ -316,7 +317,6 @@ def test(settings, file_list):
elif '2017' in file_list:
sub_dir = "val2017"
test_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
file_list = os.path.join(settings.data_dir, file_list)
return _reader_creator(test_settings, file_list, 'test', False)
elif settings.dataset == 'pascalvoc':
return _reader_creator(settings, file_list, 'test', False)
......
......@@ -12,46 +12,35 @@ import functools
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('learning_rate', float, 0.001, "Learning rate.")
add_arg('batch_size', int, 32, "Minibatch size.")
add_arg('num_passes', int, 25, "Epoch number.")
add_arg('parallel', bool, True, "Whether use parallel training.")
add_arg('use_gpu', bool, True, "Whether use GPU.")
add_arg('data_dir', str, './data/COCO17', "Root path of data")
add_arg('train_file_list', str, 'annotations/instances_train2017.json',
"train file list")
add_arg('val_file_list', str, 'annotations/instances_val2017.json',
"vaild file list")
add_arg('model_save_dir', str, 'model_COCO17', "where to save model")
add_arg('dataset', str, 'coco', "coco or pascalvoc")
add_arg(
'is_toy', int, 0,
"Is Toy for quick debug, 0 means using all data, while n means using only n sample"
)
add_arg('label_file', str, 'label_list',
"Lable file which lists all label name")
add_arg('dataset', str, 'pascalvoc', "coco or pascalvoc.")
add_arg('model_save_dir', str, 'model', "The path to save model.")
add_arg('pretrained_model', str, 'pretrained/ssd_mobilenet_coco/', "The init model path.")
add_arg('apply_distort', bool, True, "Whether apply distort")
add_arg('apply_expand', bool, False, "Whether appley expand")
add_arg('resize_h', int, 300, "resize image size")
add_arg('resize_w', int, 300, "resize image size")
add_arg('mean_value_B', float, 127.5,
"mean value which will be subtracted") #123.68
add_arg('mean_value_G', float, 127.5,
"mean value which will be subtracted") #116.78
add_arg('mean_value_R', float, 127.5,
"mean value which will be subtracted") #103.94
add_arg('mean_value_B', float, 127.5, "mean value which will be subtracted") #123.68
add_arg('mean_value_G', float, 127.5, "mean value which will be subtracted") #116.78
add_arg('mean_value_R', float, 127.5, "mean value which will be subtracted") #103.94
add_arg('is_toy', int, 0, "Toy for quick debug, 0 means using all data, while n means using only n sample")
# yapf: disable
def train(args,
def parallel_do(args,
train_file_list,
val_file_list,
data_args,
learning_rate,
batch_size,
num_passes,
model_save_dir='model',
init_model_path=None):
model_save_dir,
pretrained_model=None):
image_shape = [3, data_args.resize_h, data_args.resize_w]
if data_args.dataset == 'coco':
num_classes = 81
......@@ -125,8 +114,11 @@ def train(args,
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
#load_model.load_and_set_vars(place)
load_model.load_paddlev1_vars(place)
if pretrained_model:
def if_exist(var):
return os.path.exists(os.path.join(pretrained_model, var.name))
fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)
train_reader = paddle.batch(
reader.train(data_args, train_file_list), batch_size=batch_size)
test_reader = paddle.batch(
......@@ -151,7 +143,6 @@ def train(args,
for batch_id, data in enumerate(train_reader()):
prev_start_time = start_time
start_time = time.time()
#print("Batch {} start at {:.2f}".format(batch_id, start_time))
loss_v = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[loss])
......@@ -164,29 +155,148 @@ def train(args,
if pass_id % 10 == 0 or pass_id == num_passes - 1:
model_path = os.path.join(model_save_dir, str(pass_id))
print 'save models to %s' % (model_path)
fluid.io.save_inference_model(model_path, ['image'], [nmsed_out],
exe)
fluid.io.save_persistables(exe, model_path)
def parallel_exe(args,
train_file_list,
val_file_list,
data_args,
learning_rate,
batch_size,
num_passes,
model_save_dir='model',
pretrained_model=None):
image_shape = [3, data_args.resize_h, data_args.resize_w]
if data_args.dataset == 'coco':
num_classes = 81
elif data_args.dataset == 'pascalvoc':
num_classes = 21
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
gt_box = fluid.layers.data(
name='gt_box', shape=[4], dtype='float32', lod_level=1)
gt_label = fluid.layers.data(
name='gt_label', shape=[1], dtype='int32', lod_level=1)
difficult = fluid.layers.data(
name='gt_difficult', shape=[1], dtype='int32', lod_level=1)
locs, confs, box, box_var = mobile_net(num_classes, image, image_shape)
nmsed_out = fluid.layers.detection_output(
locs, confs, box, box_var, nms_threshold=0.45)
loss = fluid.layers.ssd_loss(locs, confs, gt_box, gt_label, box,
box_var)
loss = fluid.layers.reduce_sum(loss)
test_program = fluid.default_main_program().clone(for_test=True)
with fluid.program_guard(test_program):
map_eval = fluid.evaluator.DetectionMAP(
nmsed_out,
gt_label,
gt_box,
difficult,
num_classes,
overlap_threshold=0.5,
evaluate_difficult=False,
ap_version='integral')
if data_args.dataset == 'coco':
# learning rate decay in 12, 19 pass, respectively
if '2014' in train_file_list:
boundaries = [82783 / batch_size * 12, 82783 / batch_size * 19]
elif '2017' in train_file_list:
boundaries = [118287 / batch_size * 12, 118287 / batch_size * 19]
elif data_args.dataset == 'pascalvoc':
boundaries = [40000, 60000]
values = [learning_rate, learning_rate * 0.5, learning_rate * 0.25]
optimizer = fluid.optimizer.RMSProp(
learning_rate=fluid.layers.piecewise_decay(boundaries, values),
regularization=fluid.regularizer.L2Decay(0.00005), )
optimizer.minimize(loss)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if pretrained_model:
def if_exist(var):
return os.path.exists(os.path.join(pretrained_model, var.name))
fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
train_reader = paddle.batch(
reader.train(data_args, train_file_list), batch_size=batch_size)
test_reader = paddle.batch(
reader.test(data_args, val_file_list), batch_size=batch_size)
feeder = fluid.DataFeeder(
place=place, feed_list=[image, gt_box, gt_label, difficult])
def test(pass_id):
_, accum_map = map_eval.get_map_var()
map_eval.reset(exe)
test_map = None
for _, data in enumerate(test_reader()):
test_map = exe.run(test_program,
feed=feeder.feed(data),
fetch_list=[accum_map])
print("Test {0}, map {1}".format(pass_id, test_map[0]))
for pass_id in range(num_passes):
start_time = time.time()
prev_start_time = start_time
end_time = 0
test(pass_id)
for batch_id, data in enumerate(train_reader()):
prev_start_time = start_time
start_time = time.time()
loss_v, = train_exe.run(fetch_list=[loss.name],
feed_dict=feeder.feed(data))
end_time = time.time()
loss_v = np.mean(np.array(loss_v))
if batch_id % 20 == 0:
print("Pass {0}, batch {1}, loss {2}, time {3}".format(
pass_id, batch_id, loss_v, start_time - prev_start_time))
if pass_id % 10 == 0 or pass_id == num_passes - 1:
model_path = os.path.join(model_save_dir, str(pass_id))
print 'save models to %s' % (model_path)
fluid.io.save_persistables(exe, model_path)
if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
data_dir = 'data/pascalvoc'
train_file_list = 'trainval.txt'
val_file_list = 'test.txt'
label_file = 'label_list'
model_save_dir = args.model_save_dir
if args.dataset == 'coco':
data_dir = './data/COCO17'
train_file_list = 'annotations/instances_train2017.json'
val_file_list = 'annotations/instances_val2017.json'
label_file = 'label_list'
data_args = reader.Settings(
dataset=args.dataset, # coco or pascalvoc
dataset=args.dataset,
toy=args.is_toy,
data_dir=args.data_dir,
label_file=args.label_file,
data_dir=data_dir,
label_file=label_file,
apply_distort=args.apply_distort,
apply_expand=args.apply_expand,
resize_h=args.resize_h,
resize_w=args.resize_w,
mean_value=[args.mean_value_B, args.mean_value_G, args.mean_value_R])
train(
args,
train_file_list=args.train_file_list,
val_file_list=args.val_file_list,
#method = parallel_do
method = parallel_exe
method(args,
train_file_list=train_file_list,
val_file_list=val_file_list,
data_args=data_args,
learning_rate=args.learning_rate,
batch_size=args.batch_size,
num_passes=args.num_passes,
model_save_dir=args.model_save_dir)
model_save_dir=model_save_dir,
pretrained_model=args.pretrained_model)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册