Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
de9eb717
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“2fd1bf2ea6b6e0d27fb49461dd2b35c8e2a2b13b”上不存在“paddle/infrt/dialect/phi/pass/kernel_op_desc_test.cc”
提交
de9eb717
编写于
10月 10, 2019
作者:
L
Liufang Sang
提交者:
whs
10月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix classification quantization (#3483)
上级
5108c1c1
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
258 addition
and
76 deletion
+258
-76
PaddleSlim/classification/models/resnet.py
PaddleSlim/classification/models/resnet.py
+67
-23
PaddleSlim/classification/quantization/README.md
PaddleSlim/classification/quantization/README.md
+32
-19
PaddleSlim/classification/quantization/compress.py
PaddleSlim/classification/quantization/compress.py
+3
-3
PaddleSlim/classification/quantization/configs/mobilenet_v1.yaml
...lim/classification/quantization/configs/mobilenet_v1.yaml
+2
-2
PaddleSlim/classification/quantization/configs/mobilenet_v2.yaml
...lim/classification/quantization/configs/mobilenet_v2.yaml
+2
-2
PaddleSlim/classification/quantization/configs/resnet34.yaml
PaddleSlim/classification/quantization/configs/resnet34.yaml
+6
-6
PaddleSlim/classification/quantization/freeze.py
PaddleSlim/classification/quantization/freeze.py
+125
-0
PaddleSlim/classification/quantization/run.sh
PaddleSlim/classification/quantization/run.sh
+21
-21
未找到文件。
PaddleSlim/classification/models/resnet.py
浏览文件 @
de9eb717
...
...
@@ -58,6 +58,7 @@ class ResNet():
pool_padding
=
1
,
pool_type
=
'max'
)
if
layers
>=
50
:
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
]
and
block
==
2
:
...
...
@@ -85,6 +86,30 @@ class ResNet():
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
else
:
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
conv_name
=
prefix_name
+
conv_name
conv
=
self
.
basic_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
is_first
=
block
==
i
==
0
,
name
=
conv_name
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
fc_name
=
fc_name
if
fc_name
is
None
else
prefix_name
+
fc_name
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
,
name
=
fc_name
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
def
conv_bn_layer
(
self
,
...
...
@@ -126,9 +151,9 @@ class ResNet():
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
,
name
):
def
shortcut
(
self
,
input
,
ch_out
,
stride
,
is_first
,
name
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
if
ch_in
!=
ch_out
or
stride
!=
1
or
is_first
==
True
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
name
=
name
)
else
:
return
input
...
...
@@ -155,11 +180,30 @@ class ResNet():
name
=
name
+
"_branch2c"
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
,
name
=
name
+
"_branch1"
)
input
,
num_filters
*
4
,
stride
,
is_first
=
False
,
name
=
name
+
"_branch1"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
,
name
=
name
+
".add.output.5"
)
def
basic_block
(
self
,
input
,
num_filters
,
stride
,
is_first
,
name
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
'relu'
,
stride
=
stride
,
name
=
name
+
"_branch2a"
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
name
=
name
+
"_branch2b"
)
short
=
self
.
shortcut
(
input
,
num_filters
,
stride
,
is_first
,
name
=
name
+
"_branch1"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
def
ResNet34
(
prefix_name
=
''
):
model
=
ResNet
(
layers
=
34
,
prefix_name
=
prefix_name
)
...
...
PaddleSlim/classification/quantization/README.md
浏览文件 @
de9eb717
...
...
@@ -64,22 +64,10 @@ PaddlePaddle框架中有四个和量化相关的IrPass, 分别是QuantizationTra
>注意:配置文件中的信息不会保存在断点中,重启前对配置文件的修改将会生效。
### 保存评估和预测模型
如果在配置文件的量化策略中设置了
`float_model_save_path`
,
`int8_model_save_path`
,
`mobile_model_save_path`
, 在训练结束后,会保存模型量化压缩之后用于评估和预测的模型。接下来介绍这三种模型的区别。
## 评估
如果在配置文件中设置了
`checkpoint_path`
,则每个epoch会保存一个量化后的用于评估的模型,
该模型会保存在
`${checkpoint_path}/${epoch_id}/eval_model/`
路径下,包含
`__model__`
和
`__params__`
两个文件。
其中,
`__model__`
用于保存模型结构信息,
`__params__`
用于保存参数(parameters)信息。模型结构和训练时一样。
如果不需要保存评估模型,可以在定义Compressor对象时,将
`save_eval_model`
选项设置为False(默认为True)。
脚本
<a
href=
"../eval.py"
>
PaddleSlim/classification/eval.py
</a>
中为使用该模型在评估数据集上做评估的示例。
## 预测
如果在配置文件的量化策略中设置了
`float_model_save_path`
,
`int8_model_save_path`
,
`mobile_model_save_path`
, 在训练结束后,会保存模型量化压缩之后用于预测的模型。接下来介绍这三种预测模型的区别。
### float预测模型
#### float模型
在介绍量化训练时的模型结构时介绍了PaddlePaddle框架中有四个和量化相关的IrPass, 分别是QuantizationTransformPass、QuantizationFreezePass、ConvertToInt8Pass以及TransformForMobilePass。float预测模型是在应用QuantizationFreezePass并删除eval_program中多余的operators之后,保存的模型。
QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺序,即将类似图1中的量化op和反量化op顺序改变为图2中的布局。除此之外,QuantizationFreezePass还会将
`conv2d`
、
`depthwise_conv2d`
、
`mul`
等算子的权重离线量化为int8_t范围内的值(但数据类型仍为float32),以减少预测过程中对权重的量化操作,示例如图2:
...
...
@@ -89,7 +77,7 @@ QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺
<strong>
图2:应用QuantizationFreezePass后的结果
</strong>
</p>
###
int8预测
模型
###
# int8
模型
在对训练网络进行QuantizationFreezePass之后,执行ConvertToInt8Pass,
其主要目的是将执行完QuantizationFreezePass后输出的权重类型由
`FP32`
更改为
`INT8`
。换言之,用户可以选择将量化后的权重保存为float32类型(不执行ConvertToInt8Pass)或者int8_t类型(执行ConvertToInt8Pass),示例如图3:
...
...
@@ -98,7 +86,7 @@ QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺
<strong>
图3:应用ConvertToInt8Pass后的结果
</strong>
</p>
###
mobile预测
模型
###
# mobile
模型
经TransformForMobilePass转换后,用户可得到兼容
[
paddle-lite
](
https://github.com/PaddlePaddle/Paddle-Lite
)
移动端预测库的量化模型。paddle-mobile中的量化op和反量化op的名称分别为
`quantize`
和
`dequantize`
。
`quantize`
算子和PaddlePaddle框架中的
`fake_quantize_abs_max`
算子簇的功能类似,
`dequantize`
算子和PaddlePaddle框架中的
`fake_dequantize_max_abs`
算子簇的功能相同。若选择paddle-mobile执行量化训练输出的模型,则需要将
`fake_quantize_abs_max`
等算子改为
`quantize`
算子以及将
`fake_dequantize_max_abs`
等算子改为
`dequantize`
算子,示例如图4:
<p
align=
"center"
>
...
...
@@ -106,6 +94,30 @@ QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺
<strong>
图4:应用TransformForMobilePass后的结果
</strong>
</p>
## 评估
### 每个epoch保存的评估模型
因为量化的最终模型只有在end_epoch时保存一次,不能保证保存的模型是最好的,因此
如果在配置文件中设置了
`checkpoint_path`
,则每个epoch会保存一个量化后的用于评估的模型,
该模型会保存在
`${checkpoint_path}/${epoch_id}/eval_model/`
路径下,包含
`__model__`
和
`__params__`
两个文件。
其中,
`__model__`
用于保存模型结构信息,
`__params__`
用于保存参数(parameters)信息。模型结构和训练时一样。
如果不需要保存评估模型,可以在定义Compressor对象时,将
`save_eval_model`
选项设置为False(默认为True)。
脚本
<a
href=
"../eval.py"
>
PaddleSlim/classification/eval.py
</a>
中为使用该模型在评估数据集上做评估的示例。
在评估之后,选取效果最好的epoch的模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/freeze.py
</a>
将该模型转化为以上介绍的三种模型:float模型,int8模型,mo
bile模型,需要配置的参数为:
-
model_path, 加载的模型路径,
`为${checkpoint_path}/${epoch_id}/eval_model/`
-
weight_quant_type 模型参数的量化方式,和配置文件中的类型保持一致
-
save_path
`float`
,
`int8`
,
`mobile`
模型的保存路径,分别为
`${save_path}/float/`
,
`${save_path}/int8/`
,
`${save_path}/mobile/`
### 最终评估模型
最终使用的评估模型是float模型,使用脚本
<a
href=
"../eval.py"
>
PaddleSlim/classification/eval.py
</a>
中为使用该模型在评估数据集上做评估的示例。
## 预测
### python预测
float预测模型可直接使用原生PaddlePaddle Fluid预测方法进行预测。
...
...
@@ -139,7 +151,7 @@ fluid.optimizer.Momentum(momentum=0.9,
values=[0.0001, 0.00001]),
regularization=fluid.regularizer.L2Decay(1e-4))
```
batch size 1024
8卡,batch size 1024,epoch 30, 挑选好的结果
### MobileNetV2
...
...
@@ -171,6 +183,7 @@ fluid.optimizer.Momentum(momentum=0.9,
values=[0.0001, 0.00001]),
regularization=fluid.regularizer.L2Decay(1e-4))
```
batch size 1024
8卡,batch size 1024,epoch 30, 挑选好的结果
## FAQ
PaddleSlim/classification/quantization/compress.py
浏览文件 @
de9eb717
...
...
@@ -53,12 +53,12 @@ def compress(args):
val_program
=
fluid
.
default_main_program
().
clone
()
# quantization usually use small learning rate
values
=
[
1e-4
,
1e-5
,
1e-6
]
values
=
[
1e-4
,
1e-5
]
opt
=
fluid
.
optimizer
.
Momentum
(
momentum
=
0.9
,
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
5000
*
30
,
5000
*
60
],
values
=
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
boundaries
=
[
5000
*
12
],
values
=
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
...
...
PaddleSlim/classification/quantization/configs/mobilenet_v1.yaml
浏览文件 @
de9eb717
...
...
@@ -3,7 +3,7 @@ strategies:
quantization_strategy
:
class
:
'
QuantizationStrategy'
start_epoch
:
0
end_epoch
:
0
end_epoch
:
29
float_model_save_path
:
'
./output/mobilenet_v1/float'
mobile_model_save_path
:
'
./output/mobilenet_v1/mobile'
int8_model_save_path
:
'
./output/mobilenet_v1/int8'
...
...
@@ -14,7 +14,7 @@ strategies:
save_in_nodes
:
[
'
image'
]
save_out_nodes
:
[
'
fc_0.tmp_2'
]
compressor
:
epoch
:
1
epoch
:
30
checkpoint_path
:
'
./checkpoints/mobilenet_v1/'
strategies
:
-
quantization_strategy
PaddleSlim/classification/quantization/configs/mobilenet_v2.yaml
浏览文件 @
de9eb717
...
...
@@ -3,7 +3,7 @@ strategies:
quantization_strategy
:
class
:
'
QuantizationStrategy'
start_epoch
:
0
end_epoch
:
0
end_epoch
:
29
float_model_save_path
:
'
./output/mobilenet_v2/float'
mobile_model_save_path
:
'
./output/mobilenet_v2/mobile'
int8_model_save_path
:
'
./output/mobilenet_v2/int8'
...
...
@@ -14,7 +14,7 @@ strategies:
save_in_nodes
:
[
'
image'
]
save_out_nodes
:
[
'
fc_0.tmp_2'
]
compressor
:
epoch
:
1
epoch
:
30
checkpoint_path
:
'
./checkpoints/mobilenet_v2/'
strategies
:
-
quantization_strategy
PaddleSlim/classification/quantization/configs/resnet
50
.yaml
→
PaddleSlim/classification/quantization/configs/resnet
34
.yaml
浏览文件 @
de9eb717
...
...
@@ -3,10 +3,10 @@ strategies:
quantization_strategy
:
class
:
'
QuantizationStrategy'
start_epoch
:
0
end_epoch
:
0
float_model_save_path
:
'
./output/resnet
50
/float'
mobile_model_save_path
:
'
./output/resnet
50
/mobile'
int8_model_save_path
:
'
./output/resnet
50
/int8'
end_epoch
:
29
float_model_save_path
:
'
./output/resnet
34
/float'
mobile_model_save_path
:
'
./output/resnet
34
/mobile'
int8_model_save_path
:
'
./output/resnet
34
/int8'
weight_bits
:
8
activation_bits
:
8
weight_quantize_type
:
'
abs_max'
...
...
@@ -14,7 +14,7 @@ strategies:
save_in_nodes
:
[
'
image'
]
save_out_nodes
:
[
'
fc_0.tmp_2'
]
compressor
:
epoch
:
2
checkpoint_path
:
'
./checkpoints/resnet
50
/'
epoch
:
30
checkpoint_path
:
'
./checkpoints/resnet
34
/'
strategies
:
-
quantization_strategy
PaddleSlim/classification/quantization/freeze.py
0 → 100644
浏览文件 @
de9eb717
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
os
import
sys
import
numpy
as
np
import
argparse
import
functools
import
logging
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid
import
core
from
paddle.fluid.contrib.slim.quantization
import
QuantizationTransformPass
from
paddle.fluid.contrib.slim.quantization
import
QuantizationFreezePass
from
paddle.fluid.contrib.slim.quantization
import
ConvertToInt8Pass
from
paddle.fluid.contrib.slim.quantization
import
TransformForMobilePass
sys
.
path
.
append
(
".."
)
import
imagenet_reader
as
reader
sys
.
path
.
append
(
"../../"
)
from
utility
import
add_arguments
,
print_arguments
logging
.
basicConfig
(
format
=
'%(asctime)s-%(levelname)s: %(message)s'
)
_logger
=
logging
.
getLogger
(
__name__
)
_logger
.
setLevel
(
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
# yapf: disable
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'model_path'
,
str
,
"./pruning/checkpoints/resnet50/2/eval_model/"
,
"Whether to use pretrained model."
)
add_arg
(
'save_path'
,
str
,
'./output'
,
'Path to save inference model'
)
add_arg
(
'weight_quant_type'
,
str
,
'abs_max'
,
'quantization type for weight'
)
# yapf: enable
def
eval
(
args
):
# parameters from arguments
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
val_program
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
args
.
model_path
,
exe
,
model_filename
=
"__model__"
,
params_filename
=
"__params__"
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_names
,
program
=
val_program
)
results
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
# top1_acc, top5_acc
result
=
exe
.
run
(
val_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
results
.
append
(
result
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
sys
.
stdout
.
flush
()
_logger
.
info
(
"freeze the graph for inference"
)
test_graph
=
IrGraph
(
core
.
Graph
(
val_program
.
desc
),
for_test
=
True
)
freeze_pass
=
QuantizationFreezePass
(
scope
=
fluid
.
global_scope
(),
place
=
place
,
weight_quantize_type
=
args
.
weight_quant_type
)
freeze_pass
.
apply
(
test_graph
)
server_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'float'
),
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
main_program
=
server_program
,
model_filename
=
'model'
,
params_filename
=
'params'
)
_logger
.
info
(
"convert the weights into int8 type"
)
convert_int8_pass
=
ConvertToInt8Pass
(
scope
=
fluid
.
global_scope
(),
place
=
place
)
convert_int8_pass
.
apply
(
test_graph
)
server_int8_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'int8'
),
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
main_program
=
server_int8_program
,
model_filename
=
'model'
,
params_filename
=
'params'
)
_logger
.
info
(
"convert the freezed pass to paddle-lite execution"
)
mobile_pass
=
TransformForMobilePass
()
mobile_pass
.
apply
(
test_graph
)
mobile_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'mobile'
),
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
main_program
=
mobile_program
,
model_filename
=
'model'
,
params_filename
=
'params'
)
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
eval
(
args
)
if
__name__
==
'__main__'
:
main
()
PaddleSlim/classification/quantization/run.sh
浏览文件 @
de9eb717
...
...
@@ -4,7 +4,7 @@
root_url
=
"http://paddle-imagenet-models-name.bj.bcebos.com"
MobileNetV1
=
"MobileNetV1_pretrained.tar"
MobileNetV2
=
"MobileNetV2_pretrained.tar"
ResNet
50
=
"ResNet50
_pretrained.tar"
ResNet
34
=
"ResNet34
_pretrained.tar"
pretrain_dir
=
'../pretrain'
if
[
!
-d
${
pretrain_dir
}
]
;
then
...
...
@@ -23,9 +23,9 @@ if [ ! -f ${MobileNetV2} ]; then
tar
xf
${
MobileNetV2
}
fi
if
[
!
-f
${
ResNet
50
}
]
;
then
wget
${
root_url
}
/
${
ResNet
50
}
tar
xf
${
ResNet
50
}
if
[
!
-f
${
ResNet
34
}
]
;
then
wget
${
root_url
}
/
${
ResNet
34
}
tar
xf
${
ResNet
34
}
fi
cd
-
...
...
@@ -37,14 +37,14 @@ export FLAGS_eager_delete_tensor_gb=0.0
export
CUDA_VISIBLE_DEVICES
=
0
## for quantization for mobilenet_v1
python
-u
compress.py
\
--model
"MobileNet"
\
--use_gpu
1
\
--batch_size
32
\
--pretrained_model
../pretrain/MobileNetV1_pretrained
\
--config_file
"./configs/mobilenet_v1.yaml"
\
>
mobilenet_v1.log 2>&1 &
tailf mobilenet_v1.log
#
python -u compress.py \
#
--model "MobileNet" \
#
--use_gpu 1 \
# --batch_size 256
\
#
--pretrained_model ../pretrain/MobileNetV1_pretrained \
# --config_file "./configs/mobilenet_v1.yaml" \
#
> mobilenet_v1.log 2>&1 &
#
tailf mobilenet_v1.log
## for quantization of mobilenet_v2
#python -u compress.py \
...
...
@@ -56,12 +56,12 @@ tailf mobilenet_v1.log
# > mobilenet_v2.log 2>&1 &
#tailf mobilenet_v2.log
# for compression of resnet
50
#
python -u compress.py \
# --model "ResNet50
" \
#
--use_gpu 1 \
#
--batch_size 32 \
# --pretrained_model ../pretrain/ResNet50
_pretrained \
# --config_file "./configs/resnet50
.yaml" \
# > resnet50
.log 2>&1 &
#tailf resnet50
.log
# for compression of resnet
34
python
-u
compress.py
\
--model
"ResNet34
"
\
--use_gpu
1
\
--batch_size
32
\
--pretrained_model
../pretrain/ResNet34
_pretrained
\
--config_file
"./configs/resnet34
.yaml"
\
>
resnet34
.log 2>&1 &
tailf resnet34
.log
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录