Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
dd0eefcc
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dd0eefcc
编写于
7月 19, 2017
作者:
D
dongzhihong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add start script"
上级
883006a0
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
49 addition
and
7 deletion
+49
-7
ltr/lambda_rank.py
ltr/lambda_rank.py
+12
-2
ltr/ranknet.py
ltr/ranknet.py
+15
-5
ltr/run_lambdarank.sh
ltr/run_lambdarank.sh
+11
-0
ltr/run_ranknet.sh
ltr/run_ranknet.sh
+11
-0
未找到文件。
ltr/lambda_rank.py
浏览文件 @
dd0eefcc
...
@@ -3,6 +3,7 @@ import gzip
...
@@ -3,6 +3,7 @@ import gzip
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
import
numpy
as
np
import
numpy
as
np
import
functools
import
functools
import
argparse
def
lambda_rank
(
input_dim
):
def
lambda_rank
(
input_dim
):
...
@@ -117,6 +118,15 @@ def lambda_rank_infer(pass_id):
...
@@ -117,6 +118,15 @@ def lambda_rank_infer(pass_id):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'LambdaRank demo'
)
parser
.
add_argument
(
"--run_type"
,
type
=
str
,
help
=
"run type is train|infer"
)
parser
.
add_argument
(
"--num_passes"
,
type
=
int
,
help
=
"num of passes in train| infer pass number of model"
)
args
=
parser
.
parse_args
()
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
train_lambda_rank
(
2
)
if
args
.
run_type
==
"train"
:
lambda_rank_infer
(
pass_id
=
1
)
train_lambda_rank
(
args
.
num_passes
)
elif
args
.
run_type
==
"infer"
:
lambda_rank_infer
(
pass_id
=
args
.
pass_num
-
1
)
ltr/ranknet.py
浏览文件 @
dd0eefcc
...
@@ -5,6 +5,7 @@ import functools
...
@@ -5,6 +5,7 @@ import functools
import
paddle.v2
as
paddle
import
paddle.v2
as
paddle
import
numpy
as
np
import
numpy
as
np
from
metrics
import
ndcg
from
metrics
import
ndcg
import
argparse
# ranknet is the classic pairwise learning to rank algorithm
# ranknet is the classic pairwise learning to rank algorithm
# http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
# http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
...
@@ -104,7 +105,7 @@ def ranknet_infer(pass_id):
...
@@ -104,7 +105,7 @@ def ranknet_infer(pass_id):
# we just need half_ranknet to predict a rank score, which can be used in sort documents
# we just need half_ranknet to predict a rank score, which can be used in sort documents
output
=
half_ranknet
(
"infer"
,
feature_dim
)
output
=
half_ranknet
(
"infer"
,
feature_dim
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
"ranknet_params_%d.tar.gz"
%
(
pass_id
-
1
)))
gzip
.
open
(
"ranknet_params_%d.tar.gz"
%
(
pass_id
)))
# load data of same query and relevance documents, need ranknet to rank these candidates
# load data of same query and relevance documents, need ranknet to rank these candidates
infer_query_id
=
[]
infer_query_id
=
[]
...
@@ -118,18 +119,27 @@ def ranknet_infer(pass_id):
...
@@ -118,18 +119,27 @@ def ranknet_infer(pass_id):
for
query_id
,
relevance_score
,
feature_vector
in
plain_txt_test
():
for
query_id
,
relevance_score
,
feature_vector
in
plain_txt_test
():
infer_query_id
.
append
(
query_id
)
infer_query_id
.
append
(
query_id
)
infer_data
.
append
(
feature_vector
)
infer_data
.
append
(
[
feature_vector
]
)
# predict score of infer_data document. Re-sort the document base on predict score
# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
# in descending order. then we build the ranking documents
scores
=
paddle
.
infer
(
scores
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
print
scores
for
query_id
,
score
in
zip
(
infer_query_id
,
scores
):
for
query_id
,
score
in
zip
(
infer_query_id
,
scores
):
print
"query_id : "
,
query_id
,
" ranknet rank document order : "
,
score
print
"query_id : "
,
query_id
,
" ranknet rank document order : "
,
score
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'Ranknet demo'
)
parser
.
add_argument
(
"--run_type"
,
type
=
str
,
help
=
"run type is train|infer"
)
parser
.
add_argument
(
"--num_passes"
,
type
=
int
,
help
=
"num of passes in train| infer pass number of model"
)
args
=
parser
.
parse_args
()
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
4
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
4
)
pass_num
=
2
if
args
.
run_type
==
"train"
:
train_ranknet
(
pass_num
)
train_ranknet
(
args
.
num_passes
)
ranknet_infer
(
pass_id
=
pass_num
-
1
)
elif
args
.
run_type
==
"infer"
:
ranknet_infer
(
pass_id
=
args
.
pass_num
-
1
)
ltr/run_lambdarank.sh
0 → 100644
浏览文件 @
dd0eefcc
#!/bin/sh
python lambda_rank.py
\
--run_type
=
"train"
\
--num_passes
=
10
\
2>&1 |
tee
lambdarank_train.log
python lambda_rank.py
\
--run_type
=
"infer"
\
--num_passes
=
10
\
2>&1 |
tee
lambdarank_infer.log
ltr/run_ranknet.sh
0 → 100644
浏览文件 @
dd0eefcc
#!/bin/sh
python ranknet.py
\
--run_type
=
"train"
\
--num_passes
=
10
\
2>&1 |
tee
rankenet_train.log
python ranknet.py
\
--run_type
=
"infer"
\
--num_passes
=
10
\
2>&1 |
tee
ranknet_infer.log
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录