# Reproduce DQN, DoubleDQN, DuelingDQN model with Fluid version of PaddlePaddle
Based on PaddlePaddle's next-generation API Fluid, the DQN model of deep reinforcement learning is reproduced, and the same level of indicators of the paper is reproduced in the classic Atari game. The model receives the image of the game as input, and uses the end-to-end model to directly predict the next step. The repository contains the following three types of models.
+ DQN in
[Human-level Control Through Deep Reinforcement Learning](http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html)
[Human-level Control Through Deep Reinforcement Learning](http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html)
+ DoubleDQN模型:
+ DoubleDQN in:
[Deep Reinforcement Learning with Double Q-Learning](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12389)
[Deep Reinforcement Learning with Double Q-Learning](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12389)
+ DuelingDQN模型:
+ DuelingDQN in:
[Dueling Network Architectures for Deep Reinforcement Learning](http://proceedings.mlr.press/v48/wangf16.html)
[Dueling Network Architectures for Deep Reinforcement Learning](http://proceedings.mlr.press/v48/wangf16.html)