From d7f5ee66201033828e4b8467956ba386b4fcccab Mon Sep 17 00:00:00 2001 From: Yibing Liu Date: Wed, 5 Jul 2017 11:05:26 +0800 Subject: [PATCH] follow comments in code format --- deep_speech_2/decoder.py | 12 ++++-------- deep_speech_2/evaluate.py | 4 ++-- deep_speech_2/infer.py | 2 +- deep_speech_2/lm/lm_scorer.py | 6 ++---- deep_speech_2/tune.py | 2 +- 5 files changed, 10 insertions(+), 16 deletions(-) diff --git a/deep_speech_2/decoder.py b/deep_speech_2/decoder.py index 4676b02b..a1fadc2c 100644 --- a/deep_speech_2/decoder.py +++ b/deep_speech_2/decoder.py @@ -5,6 +5,7 @@ from __future__ import print_function from itertools import groupby import numpy as np +from math import log import multiprocessing @@ -97,13 +98,8 @@ def ctc_beam_search_decoder(probs_seq, # prefix_set_prev: the set containing selected prefixes # probs_b_prev: prefixes' probability ending with blank in previous step # probs_nb_prev: prefixes' probability ending with non-blank in previous step - prefix_set_prev, probs_b_prev, probs_nb_prev = { - '\t': 1.0 - }, { - '\t': 1.0 - }, { - '\t': 0.0 - } + prefix_set_prev = {'\t': 1.0} + probs_b_prev, probs_nb_prev = {'\t': 1.0}, {'\t': 0.0} ## extend prefix in loop for time_step in xrange(len(probs_seq)): @@ -179,7 +175,7 @@ def ctc_beam_search_decoder(probs_seq, # score last word by external scorer if (ext_scoring_func is not None) and (result[-1] != ' '): prob = prob * ext_scoring_func(result) - log_prob = np.log(prob) + log_prob = log(prob) beam_result.append((log_prob, result)) ## output top beam_size decoding results diff --git a/deep_speech_2/evaluate.py b/deep_speech_2/evaluate.py index 7ef32ad1..a4f2a690 100644 --- a/deep_speech_2/evaluate.py +++ b/deep_speech_2/evaluate.py @@ -62,7 +62,7 @@ parser.add_argument( ) parser.add_argument( "--language_model_path", - default="data/en.00.UNKNOWN.klm", + default="lm/data/1Billion.klm", type=str, help="Path for language model. (default: %(default)s)") parser.add_argument( @@ -88,7 +88,7 @@ parser.add_argument( help="Width for beam search decoding. (default: %(default)d)") parser.add_argument( "--decode_manifest_path", - default='data/manifest.libri.test-clean', + default='datasets/manifest.test', type=str, help="Manifest path for decoding. (default: %(default)s)") parser.add_argument( diff --git a/deep_speech_2/infer.py b/deep_speech_2/infer.py index 686f2822..dc143080 100644 --- a/deep_speech_2/infer.py +++ b/deep_speech_2/infer.py @@ -89,7 +89,7 @@ parser.add_argument( help="Number of output per sample in beam search. (default: %(default)d)") parser.add_argument( "--language_model_path", - default="lm/data/en.00.UNKNOWN.klm", + default="lm/data/1Billion.klm", type=str, help="Path for language model. (default: %(default)s)") parser.add_argument( diff --git a/deep_speech_2/lm/lm_scorer.py b/deep_speech_2/lm/lm_scorer.py index de41754f..463e96d6 100644 --- a/deep_speech_2/lm/lm_scorer.py +++ b/deep_speech_2/lm/lm_scorer.py @@ -62,9 +62,7 @@ class LmScorer(object): lm = self._language_model_score(sentence) word_cnt = self._word_count(sentence) if log == False: - score = np.power(lm, self._alpha) \ - * np.power(word_cnt, self._beta) + score = np.power(lm, self._alpha) * np.power(word_cnt, self._beta) else: - score = self._alpha * np.log(lm) \ - + self._beta * np.log(word_cnt) + score = self._alpha * np.log(lm) + self._beta * np.log(word_cnt) return score diff --git a/deep_speech_2/tune.py b/deep_speech_2/tune.py index e26bc45c..4e9e268f 100644 --- a/deep_speech_2/tune.py +++ b/deep_speech_2/tune.py @@ -77,7 +77,7 @@ parser.add_argument( help="Width for beam search decoding. (default: %(default)d)") parser.add_argument( "--language_model_path", - default="lm/data/en.00.UNKNOWN.klm", + default="lm/data/1Billion.klm", type=str, help="Path for language model. (default: %(default)s)") parser.add_argument( -- GitLab