未验证 提交 d52ff5a0 编写于 作者: L liu zhengxi 提交者: GitHub

update apis according to cards, test=develop (#4638)

上级 aa86b479
......@@ -25,58 +25,6 @@ import numpy as np
import paddle.fluid as fluid
class Placeholder(object):
def __init__(self):
self.shapes = []
self.dtypes = []
self.lod_levels = []
self.names = []
def __init__(self, input_shapes):
self.shapes = []
self.dtypes = []
self.lod_levels = []
self.names = []
for new_holder in input_shapes:
shape = new_holder[0]
dtype = new_holder[1]
lod_level = new_holder[2] if len(new_holder) >= 3 else 0
name = new_holder[3] if len(new_holder) >= 4 else ""
self.append_placeholder(
shape, dtype, lod_level=lod_level, name=name)
def append_placeholder(self, shape, dtype, lod_level=0, name=""):
self.shapes.append(shape)
self.dtypes.append(dtype)
self.lod_levels.append(lod_level)
self.names.append(name)
def build(self, capacity, reader_name, use_double_buffer=False):
pyreader = fluid.layers.py_reader(
capacity=capacity,
shapes=self.shapes,
dtypes=self.dtypes,
lod_levels=self.lod_levels,
name=reader_name,
use_double_buffer=use_double_buffer)
return [pyreader, fluid.layers.read_file(pyreader)]
def __add__(self, new_holder):
assert isinstance(new_holder, tuple) or isinstance(new_holder, list)
assert len(new_holder) >= 2
shape = new_holder[0]
dtype = new_holder[1]
lod_level = new_holder[2] if len(new_holder) >= 3 else 0
name = new_holder[3] if len(new_holder) >= 4 else ""
self.append_placeholder(shape, dtype, lod_level=lod_level, name=name)
class InputField(object):
"""
A high-level API for handling inputs in PaddlePaddle.
......
......@@ -30,6 +30,7 @@ import io
******functions for file processing******
"""
def load_vocab(file_path):
"""
load the given vocabulary
......@@ -56,8 +57,11 @@ def get_result_file(args):
"""
with io.open(args.test_data_dir, "r", encoding="utf8") as test_file:
with io.open("predictions.txt", "r", encoding="utf8") as predictions_file:
with io.open(args.test_result_path, "w", encoding="utf8") as test_result_file:
with io.open(
"predictions.txt", "r", encoding="utf8") as predictions_file:
with io.open(
args.test_result_path, "w",
encoding="utf8") as test_result_file:
test_datas = [line.strip("\n") for line in test_file]
predictions = [line.strip("\n") for line in predictions_file]
for test_data, prediction in zip(test_datas, predictions):
......@@ -165,49 +169,81 @@ class ArgumentGroup(object):
help=help + ' Default: %(default)s.',
**kwargs)
class ArgConfig(object):
def __init__(self):
parser = argparse.ArgumentParser()
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("config_path", str, None, "Path to the json file for EmoTect model config.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
model_g.add_arg("output_dir", str, None, "Directory path to save checkpoints")
model_g.add_arg("task_mode", str, None, "task mode: pairwise or pointwise")
model_g = ArgumentGroup(parser, "model",
"model configuration and paths.")
model_g.add_arg("config_path", str, None,
"Path to the json file for EmoTect model config.")
model_g.add_arg("init_checkpoint", str, None,
"Init checkpoint to resume training from.")
model_g.add_arg("output_dir", str, None,
"Directory path to save checkpoints")
model_g.add_arg("task_mode", str, None,
"task mode: pairwise or pointwise")
train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch", int, 10, "Number of epoches for training.")
train_g.add_arg("save_steps", int, 200, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 100, "The steps interval to evaluate model performance.")
train_g.add_arg("save_steps", int, 200,
"The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 100,
"The steps interval to evaluate model performance.")
log_g = ArgumentGroup(parser, "logging", "logging related")
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose_result", bool, True, "Whether to output verbose result.")
log_g.add_arg("test_result_path", str, "test_result", "Directory path to test result.")
log_g.add_arg("infer_result_path", str, "infer_result", "Directory path to infer result.")
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("train_data_dir", str, None, "Directory path to training data.")
data_g.add_arg("valid_data_dir", str, None, "Directory path to valid data.")
data_g.add_arg("test_data_dir", str, None, "Directory path to testing data.")
data_g.add_arg("infer_data_dir", str, None, "Directory path to infer data.")
log_g.add_arg("skip_steps", int, 10,
"The steps interval to print loss.")
log_g.add_arg("verbose_result", bool, True,
"Whether to output verbose result.")
log_g.add_arg("test_result_path", str, "test_result",
"Directory path to test result.")
log_g.add_arg("infer_result_path", str, "infer_result",
"Directory path to infer result.")
data_g = ArgumentGroup(
parser, "data",
"Data paths, vocab paths and data processing options")
data_g.add_arg("train_data_dir", str, None,
"Directory path to training data.")
data_g.add_arg("valid_data_dir", str, None,
"Directory path to valid data.")
data_g.add_arg("test_data_dir", str, None,
"Directory path to testing data.")
data_g.add_arg("infer_data_dir", str, None,
"Directory path to infer data.")
data_g.add_arg("vocab_path", str, None, "Vocabulary path.")
data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training.")
data_g.add_arg("batch_size", int, 32,
"Total examples' number in batch for training.")
run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda", bool, False, "If set, use GPU for training.")
run_type_g.add_arg("task_name", str, None, "The name of task to perform sentiment classification.")
run_type_g.add_arg("do_train", bool, False, "Whether to perform training.")
run_type_g.add_arg("use_cuda", bool, False,
"If set, use GPU for training.")
run_type_g.add_arg(
"task_name", str, None,
"The name of task to perform sentiment classification.")
run_type_g.add_arg("do_train", bool, False,
"Whether to perform training.")
run_type_g.add_arg("do_valid", bool, False, "Whether to perform dev.")
run_type_g.add_arg("do_test", bool, False, "Whether to perform testing.")
run_type_g.add_arg("do_infer", bool, False, "Whether to perform inference.")
run_type_g.add_arg("compute_accuracy", bool, False, "Whether to compute accuracy.")
run_type_g.add_arg("lamda", float, 0.91, "When task_mode is pairwise, lamda is the threshold for calculating the accuracy.")
run_type_g.add_arg("do_test", bool, False,
"Whether to perform testing.")
run_type_g.add_arg("do_infer", bool, False,
"Whether to perform inference.")
run_type_g.add_arg("compute_accuracy", bool, False,
"Whether to compute accuracy.")
run_type_g.add_arg(
"lamda", float, 0.91,
"When task_mode is pairwise, lamda is the threshold for calculating the accuracy."
)
custom_g = ArgumentGroup(parser, "customize", "customized options.")
self.custom_g = custom_g
parser.add_argument('--enable_ce',action='store_true',help='If set, run the task with continuous evaluation logs.')
parser.add_argument(
'--enable_ce',
action='store_true',
help='If set, run the task with continuous evaluation logs.')
self.parser = parser
......@@ -355,10 +391,9 @@ def init_checkpoint(exe, init_checkpoint_path, main_program):
return False
return os.path.exists(os.path.join(init_checkpoint_path, var.name))
fluid.io.load_vars(
exe,
init_checkpoint_path,
main_program=main_program,
predicate=existed_persitables)
var_list = []
for var in main_program.list_vars():
if fluid.io.is_persistable(var) and existed_persitables(var):
var_list.append(var)
fluid.load(main_program, init_checkpoint_path, exe, var_list=var_list)
print("Load model from {}".format(init_checkpoint_path))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册