未验证 提交 d331b799 编写于 作者: L lvmengsi 提交者: GitHub

change PyReader to from_generator (#3490)

* change PyReader to from_generator

* fluid.layers.data->fluid.data

* fix_bug
上级 01c07b2f
......@@ -47,7 +47,7 @@ def RandomHorizonFlip(img):
return img
def get_preprocess_param(load_size, crop_size):
def get_preprocess_param2(load_size, crop_size):
x = np.random.randint(0, np.maximum(0, load_size - crop_size))
y = np.random.randint(0, np.maximum(0, load_size - crop_size))
flip = np.random.rand() > 0.5
......@@ -59,7 +59,7 @@ def get_preprocess_param(load_size, crop_size):
}
def get_preprocess_param(load_width, load_height, crop_width, crop_height):
def get_preprocess_param4(load_width, load_height, crop_width, crop_height):
if crop_width == load_width:
x = 0
y = 0
......@@ -178,7 +178,7 @@ class pair_reader_creator(reader_creator):
self.id2name[i] = os.path.basename(files[0])
if self.mode == "TRAIN":
param = get_preprocess_param(args.image_size,
param = get_preprocess_param2(args.image_size,
args.crop_size)
img1 = img1.resize((args.image_size, args.image_size),
Image.BICUBIC)
......@@ -266,7 +266,7 @@ class triplex_reader_creator(reader_creator):
img3 = Image.open(os.path.join(self.image_dir, files[2]))
if self.mode == "TRAIN":
param = get_preprocess_param(
param = get_preprocess_param4(
args.load_width, args.load_height, args.crop_width,
args.crop_height)
img1 = img1.resize((args.load_width, args.load_height),
......
......@@ -83,11 +83,12 @@ def infer(args):
model_name = 'net_G'
if args.model_net == 'CycleGAN':
py_reader = fluid.io.PyReader(
loader = fluid.io.DataLoader.from_generator(
feed_list=[input, image_name],
capacity=4, ## batch_size * 4
iterable=True,
use_double_buffer=True)
from network.CycleGAN_network import CycleGAN_model
model = CycleGAN_model()
if args.input_style == "A":
......@@ -97,7 +98,7 @@ def infer(args):
else:
raise "Input with style [%s] is not supported." % args.input_style
elif args.model_net == 'Pix2pix':
py_reader = fluid.io.PyReader(
loader = fluid.io.DataLoader.from_generator(
feed_list=[input, image_name],
capacity=4, ## batch_size * 4
iterable=True,
......@@ -295,11 +296,11 @@ def infer(args):
batch_size=args.n_samples,
mode="VAL")
reader_test = test_reader.make_reader(args, return_name=True)
py_reader.decorate_batch_generator(
loader.set_batch_generator(
reader_test,
places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
id2name = test_reader.id2name
for data in py_reader():
for data in loader():
real_img, image_name = data[0]['input'], data[0]['image_name']
image_name = id2name[np.array(image_name).astype('int32')[0]]
print("read: ", image_name)
......
......@@ -272,16 +272,16 @@ class AttGAN(object):
def build_model(self):
data_shape = [-1, 3, self.cfg.image_size, self.cfg.image_size]
image_real = fluid.layers.data(
image_real = fluid.data(
name='image_real', shape=data_shape, dtype='float32')
label_org = fluid.layers.data(
name='label_org', shape=[self.cfg.c_dim], dtype='float32')
label_trg = fluid.layers.data(
name='label_trg', shape=[self.cfg.c_dim], dtype='float32')
label_org_ = fluid.layers.data(
name='label_org_', shape=[self.cfg.c_dim], dtype='float32')
label_trg_ = fluid.layers.data(
name='label_trg_', shape=[self.cfg.c_dim], dtype='float32')
label_org = fluid.data(
name='label_org', shape=[-1, self.cfg.c_dim], dtype='float32')
label_trg = fluid.data(
name='label_trg', shape=[-1, self.cfg.c_dim], dtype='float32')
label_org_ = fluid.data(
name='label_org_', shape=[-1, self.cfg.c_dim], dtype='float32')
label_trg_ = fluid.data(
name='label_trg_', shape=[-1, self.cfg.c_dim], dtype='float32')
py_reader = fluid.io.PyReader(
feed_list=[image_real, label_org, label_trg],
......
......@@ -88,12 +88,11 @@ class CGAN(object):
def build_model(self):
img = fluid.layers.data(name='img', shape=[784], dtype='float32')
condition = fluid.layers.data(
name='condition', shape=[1], dtype='float32')
noise = fluid.layers.data(
name='noise', shape=[self.cfg.noise_size], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
img = fluid.data(name='img', shape=[-1, 784], dtype='float32')
condition = fluid.data(name='condition', shape=[-1, 1], dtype='float32')
noise = fluid.data(
name='noise', shape=[-1, self.cfg.noise_size], dtype='float32')
label = fluid.data(name='label', shape=[-1, 1], dtype='float32')
g_trainer = GTrainer(noise, condition, self.cfg)
d_trainer = DTrainer(img, condition, label, self.cfg)
......
......@@ -231,13 +231,11 @@ class CycleGAN(object):
def build_model(self):
data_shape = [-1, 3, self.cfg.crop_size, self.cfg.crop_size]
input_A = fluid.layers.data(
name='input_A', shape=data_shape, dtype='float32')
input_B = fluid.layers.data(
name='input_B', shape=data_shape, dtype='float32')
fake_pool_A = fluid.layers.data(
input_A = fluid.data(name='input_A', shape=data_shape, dtype='float32')
input_B = fluid.data(name='input_B', shape=data_shape, dtype='float32')
fake_pool_A = fluid.data(
name='fake_pool_A', shape=data_shape, dtype='float32')
fake_pool_B = fluid.layers.data(
fake_pool_B = fluid.data(
name='fake_pool_B', shape=data_shape, dtype='float32')
A_py_reader = fluid.io.PyReader(
......@@ -348,10 +346,10 @@ class CycleGAN(object):
batch_id += 1
if self.cfg.run_test:
A_image_name = fluid.layers.data(
name='A_image_name', shape=[1], dtype='int32')
B_image_name = fluid.layers.data(
name='B_image_name', shape=[1], dtype='int32')
A_image_name = fluid.data(
name='A_image_name', shape=[-1, 1], dtype='int32')
B_image_name = fluid.data(
name='B_image_name', shape=[-1, 1], dtype='int32')
A_test_py_reader = fluid.io.PyReader(
feed_list=[input_A, A_image_name],
capacity=4,
......
......@@ -86,10 +86,10 @@ class DCGAN(object):
self.train_reader = train_reader
def build_model(self):
img = fluid.layers.data(name='img', shape=[784], dtype='float32')
noise = fluid.layers.data(
name='noise', shape=[self.cfg.noise_size], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
img = fluid.data(name='img', shape=[-1, 784], dtype='float32')
noise = fluid.data(
name='noise', shape=[-1, self.cfg.noise_size], dtype='float32')
label = fluid.data(name='label', shape=[-1, 1], dtype='float32')
g_trainer = GTrainer(noise, label, self.cfg)
d_trainer = DTrainer(img, label, self.cfg)
......
......@@ -213,16 +213,14 @@ class Pix2pix(object):
def build_model(self):
data_shape = [-1, 3, self.cfg.crop_size, self.cfg.crop_size]
input_A = fluid.layers.data(
name='input_A', shape=data_shape, dtype='float32')
input_B = fluid.layers.data(
name='input_B', shape=data_shape, dtype='float32')
input_fake = fluid.layers.data(
input_A = fluid.data(name='input_A', shape=data_shape, dtype='float32')
input_B = fluid.data(name='input_B', shape=data_shape, dtype='float32')
input_fake = fluid.data(
name='input_fake', shape=data_shape, dtype='float32')
py_reader = fluid.io.PyReader(
loader = fluid.io.DataLoader.from_generator(
feed_list=[input_A, input_B],
capacity=4, ## batch_size * 4
capacity=4,
iterable=True,
use_double_buffer=True)
......@@ -232,7 +230,7 @@ class Pix2pix(object):
# prepare environment
place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
py_reader.decorate_batch_generator(
loader.set_batch_generator(
self.train_reader,
places=fluid.cuda_places()
if self.cfg.use_gpu else fluid.cpu_places())
......@@ -259,7 +257,7 @@ class Pix2pix(object):
for epoch_id in range(self.cfg.epoch):
batch_id = 0
for tensor in py_reader():
for tensor in loader():
s_time = time.time()
tensor_A, tensor_B = tensor[0]['input_A'], tensor[0]['input_B']
......@@ -298,16 +296,16 @@ class Pix2pix(object):
batch_id += 1
if self.cfg.run_test:
image_name = fluid.layers.data(
image_name = fluid.data(
name='image_name',
shape=[self.cfg.batch_size],
shape=[-1, self.cfg.batch_size],
dtype="int32")
test_py_reader = fluid.io.PyReader(
test_loader = fluid.io.DataLoader.from_generator(
feed_list=[input_A, input_B, image_name],
capacity=4, ## batch_size * 4
capacity=4,
iterable=True,
use_double_buffer=True)
test_py_reader.decorate_batch_generator(
test_loader.set_batch_generator(
self.test_reader,
places=fluid.cuda_places()
if self.cfg.use_gpu else fluid.cpu_places())
......@@ -319,7 +317,7 @@ class Pix2pix(object):
place,
test_program,
gen_trainer,
test_py_reader,
test_loader,
A_id2name=self.id2name)
if self.cfg.save_checkpoints:
......
......@@ -289,13 +289,13 @@ class SPADE(object):
]
edge_shape = [-1, 1, self.cfg.crop_height, self.cfg.crop_width]
input_A = fluid.layers.data(
input_A = fluid.data(
name='input_label', shape=label_shape, dtype='float32')
input_B = fluid.layers.data(
input_B = fluid.data(
name='input_img', shape=data_shape, dtype='float32')
input_C = fluid.layers.data(
input_C = fluid.data(
name='input_ins', shape=edge_shape, dtype='float32')
input_fake = fluid.layers.data(
input_fake = fluid.data(
name='input_fake', shape=data_shape, dtype='float32')
gen_trainer = GTrainer(input_A, input_B, input_C, self.cfg,
......@@ -325,7 +325,7 @@ class SPADE(object):
### memory optim
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = False
build_strategy.enable_inplace = True
build_strategy.sync_batch_norm = False
gen_trainer_program = fluid.CompiledProgram(
......@@ -387,9 +387,9 @@ class SPADE(object):
if self.cfg.run_test:
test_program = gen_trainer.infer_program
image_name = fluid.layers.data(
image_name = fluid.data(
name='image_name',
shape=[self.cfg.batch_size],
shape=[-1, self.cfg.batch_size],
dtype="int32")
test_py_reader = fluid.io.PyReader(
feed_list=[input_A, input_B, input_C, image_name],
......
......@@ -284,16 +284,16 @@ class STGAN(object):
def build_model(self):
data_shape = [-1, 3, self.cfg.image_size, self.cfg.image_size]
image_real = fluid.layers.data(
image_real = fluid.data(
name='image_real', shape=data_shape, dtype='float32')
label_org = fluid.layers.data(
name='label_org', shape=[self.cfg.c_dim], dtype='float32')
label_trg = fluid.layers.data(
name='label_trg', shape=[self.cfg.c_dim], dtype='float32')
label_org_ = fluid.layers.data(
name='label_org_', shape=[self.cfg.c_dim], dtype='float32')
label_trg_ = fluid.layers.data(
name='label_trg_', shape=[self.cfg.c_dim], dtype='float32')
label_org = fluid.data(
name='label_org', shape=[-1, self.cfg.c_dim], dtype='float32')
label_trg = fluid.data(
name='label_trg', shape=[-1, self.cfg.c_dim], dtype='float32')
label_org_ = fluid.data(
name='label_org_', shape=[-1, self.cfg.c_dim], dtype='float32')
label_trg_ = fluid.data(
name='label_trg_', shape=[-1, self.cfg.c_dim], dtype='float32')
test_gen_trainer = GTrainer(image_real, label_org, label_org_,
label_trg, label_trg_, self.cfg,
......@@ -378,9 +378,9 @@ class STGAN(object):
batch_id += 1
if self.cfg.run_test:
image_name = fluid.layers.data(
image_name = fluid.data(
name='image_name',
shape=[self.cfg.n_samples],
shape=[-1, self.cfg.n_samples],
dtype='int32')
test_py_reader = fluid.io.PyReader(
feed_list=[image_real, label_org, label_trg, image_name],
......
......@@ -261,12 +261,12 @@ class StarGAN(object):
def build_model(self):
data_shape = [-1, 3, self.cfg.image_size, self.cfg.image_size]
image_real = fluid.layers.data(
image_real = fluid.data(
name='image_real', shape=data_shape, dtype='float32')
label_org = fluid.layers.data(
name='label_org', shape=[self.cfg.c_dim], dtype='float32')
label_trg = fluid.layers.data(
name='label_trg', shape=[self.cfg.c_dim], dtype='float32')
label_org = fluid.data(
name='label_org', shape=[-1, self.cfg.c_dim], dtype='float32')
label_trg = fluid.data(
name='label_trg', shape=[-1, self.cfg.c_dim], dtype='float32')
py_reader = fluid.io.PyReader(
feed_list=[image_real, label_org, label_trg],
......@@ -346,9 +346,9 @@ class StarGAN(object):
batch_id += 1
if self.cfg.run_test:
image_name = fluid.layers.data(
image_name = fluid.data(
name='image_name',
shape=[self.cfg.n_samples],
shape=[-1, self.cfg.n_samples],
dtype='int32')
test_py_reader = fluid.io.PyReader(
feed_list=[image_real, label_org, label_trg, image_name],
......
......@@ -150,7 +150,7 @@ def save_test_image(epoch,
"input_B": B_data})
fake_B_temp = np.squeeze(fake_B_temp[0]).transpose([1, 2, 0])
input_A_temp = np.squeeze(np.array(A_data)[0]).transpose([1, 2, 0])
input_B_temp = np.squeeze(np.array(A_data)[0]).transpose([1, 2, 0])
input_B_temp = np.squeeze(np.array(B_data)[0]).transpose([1, 2, 0])
fakeB_name = "fakeB_" + str(epoch) + "_" + A_id2name[np.array(
image_name).astype('int32')[0]]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册