“bf6d3391fb21db4b9dd5852b81e94909c5a844b1”上不存在“...doc_cn/api/v2/git@gitcode.net:BaiXuePrincess/Paddle.git”
提交 cf9cf4ca 编写于 作者: W wwhu

resolve conflict

...@@ -25,3 +25,11 @@ ...@@ -25,3 +25,11 @@
files: \.md$ files: \.md$
- id: remove-tabs - id: remove-tabs
files: \.md$ files: \.md$
- repo: local
hooks:
- id: convert-markdown-into-html
name: convert-markdown-into-html
description: Convert README.md into index.html
entry: python .pre-commit-hooks/convert_markdown_into_html.py
language: system
files: .+README\.md$
import argparse
import re
import sys
HEAD = """
<html>
<head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
<script type="text/javascript" src="../.tools/theme/marked.js">
</script>
<link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
<script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
<link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
<link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
}
</style>
<body>
<div id="context" class="container-fluid markdown-body">
</div>
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
"""
TAIL = """
</div>
<!-- You can change the lines below now. -->
<script type="text/javascript">
marked.setOptions({
renderer: new marked.Renderer(),
gfm: true,
breaks: false,
smartypants: true,
highlight: function(code, lang) {
code = code.replace(/&amp;/g, "&")
code = code.replace(/&gt;/g, ">")
code = code.replace(/&lt;/g, "<")
code = code.replace(/&nbsp;/g, " ")
return hljs.highlightAuto(code, [lang]).value;
}
});
document.getElementById("context").innerHTML = marked(
document.getElementById("markdown").innerHTML)
</script>
</body>
"""
def convert_markdown_into_html(argv=None):
parser = argparse.ArgumentParser()
parser.add_argument('filenames', nargs='*', help='Filenames to fix')
args = parser.parse_args(argv)
retv = 0
for filename in args.filenames:
with open(
re.sub(r"README", "index", re.sub(r"\.md$", ".html", filename)),
"w") as output:
output.write(HEAD)
with open(filename) as input:
for line in input:
output.write(line)
output.write(TAIL)
return retv
if __name__ == '__main__':
sys.exit(convert_markdown_into_html())
...@@ -2,6 +2,8 @@ language: cpp ...@@ -2,6 +2,8 @@ language: cpp
cache: ccache cache: ccache
sudo: required sudo: required
dist: trusty dist: trusty
services:
- docker
os: os:
- linux - linux
env: env:
...@@ -16,8 +18,13 @@ addons: ...@@ -16,8 +18,13 @@ addons:
- python2.7-dev - python2.7-dev
before_install: before_install:
- pip install -U virtualenv pre-commit pip - pip install -U virtualenv pre-commit pip
- docker pull paddlepaddle/paddle:latest
script: script:
- .travis/precommit.sh - .travis/precommit.sh
- docker run -i --rm -v "$PWD:/py_unittest" paddlepaddle/paddle:latest /bin/bash -c
"cd /py_unittest && find . -name 'tests' -type d -print0 | xargs -0 -I{} -n1 bash -c 'cd {};
python -m unittest discover -v'"
notifications: notifications:
email: email:
on_success: change on_success: change
......
# models简介 # models 简介
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://github.com/PaddlePaddle/models) [![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://github.com/PaddlePaddle/models)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://github.com/PaddlePaddle/models) [![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://github.com/PaddlePaddle/models)
...@@ -6,81 +6,65 @@ ...@@ -6,81 +6,65 @@
PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提供了不同的神经网络模型供大家学习和使用。 PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提供了不同的神经网络模型供大家学习和使用。
## 词向量
- **介绍** ## 1. 词向量
[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.cn.md) 是深度学习应用于自然语言处理领域最成功的概念和成果之一,是一种分散式表示(distributed representation)法。分散式表示法用一个更低维度的实向量表示词语,向量的每个维度在实数域取值,都表示文本的某种潜在语法或语义特征。广义地讲,词向量也可以应用于普通离散特征。词向量的学习通常都是一个无监督的学习过程,因此,可以充分利用海量的无标记数据以捕获特征之间的关系,也可以有效地解决特征稀疏、标签数据缺失、数据噪声等问题 词向量用一个实向量表示词语,向量的每个维都表示文本的某种潜在语法或语义特征,是深度学习应用于自然语言处理领域最成功的概念和成果之一。广义的,词向量也可以应用于普通离散特征。词向量的学习通常都是一个无监督的学习过程,因此,可以充分利用海量的无标记数据以捕获特征之间的关系,也可以有效地解决特征稀疏、标签数据缺失、数据噪声等问题。然而,在常见词向量学习方法中,模型最后一层往往会遇到一个超大规模的分类问题,是计算性能的瓶颈
然而,在常见词向量学习方法中,模型最后一层往往会遇到一个超大规模的分类问题,是计算性能的瓶颈。在词向量的例子中,我们向大家展示如何使用Hierarchical-Sigmoid 和噪声对比估计(Noise Contrastive Estimation,NCE)来加速词向量的学习。 在词向量的例子中,我们向大家展示如何使用Hierarchical-Sigmoid 和噪声对比估计(Noise Contrastive Estimation,NCE)来加速词向量的学习。
- **应用领域** - 1.1 [Hsigmoid加速词向量训练](https://github.com/PaddlePaddle/models/tree/develop/word_embedding)
- 1.2 [噪声对比估计加速词向量训练](https://github.com/PaddlePaddle/models/tree/develop/nce_cost)
词向量是深度学习方法引入自然语言处理领域的核心技术之一,在大规模无标记语料上训练的词向量常作为各种自然语言处理任务的预训练参数,是一种较为通用的资源,对任务性能的进一步提升有一定的帮助。同时,词嵌入的思想也是深度学习模型处理离散特征的重要方法,有着广泛地借鉴和参考意义。
词向量是搜索引擎、广告系统、推荐系统等互联网服务背后的常见基础技术之一。 ## 2. 语言模型
- **模型配置说明** 语言模型是自然语言处理领域里一个重要的基础模型,它是一个概率分布模型,利用它可以确定哪个词序列的可能性更大,或者给定若干个词,可以预测下一个最可能出现的词。语言模型被应用在很多领域,如:自动写作、QA、机器翻译、拼写检查、语音识别、词性标注等。
[word_embedding](https://github.com/PaddlePaddle/models/tree/develop/word_embedding) 在语言模型的例子中,我们以文本生成为例,提供了RNN LM(包括LSTM、GRU)和N-Gram LM,供大家学习和使用。用户可以通过文档中的 “使用说明” 快速上手:适配训练语料,以训练 “自动写诗”、“自动写散文” 等有趣的模型。
## 文本生成
- **介绍** - 2.1 [基于LSTM、GRU、N-Gram的文本生成模型](https://github.com/PaddlePaddle/models/tree/develop/language_model)
我们期待有一天机器可以使用自然语言与人们进行交流,像人一样能够撰写高质量的自然语言文本,自动文本生成是实现这一目标的关键技术,可以应用于机器翻译系统、对话系统、问答系统等,为人们带来更加有趣地交互体验,也可以自动撰写新闻摘要,撰写歌词,简单的故事等等。或许未来的某一天,机器能够代替编辑,作家,歌词作者,颠覆这些内容创作领域的工作方式。 ## 3. 点击率预估
基于神经网络生成文本常使用两类方法:1. 语言模型;2. 序列到序列(sequence to sequence)映射模型。在文本生成的例子中,我们为大家展示如何使用以上两种模型来自动生成文本 点击率预估模型预判用户对一条广告点击的概率,对每次广告的点击情况做出预测,是广告技术的核心算法之一。逻谛斯克回归对大规模稀疏特征有着很好的学习能力,在点击率预估任务发展的早期一统天下。近年来,DNN 模型由于其强大的学习能力逐渐接过点击率预估任务的大旗
特别的,对序列到序列映射模型,我们以机器翻译任务为例提供了多种改进模型,供大家学习和使用,包括: 在点击率预估的例子中,我们给出谷歌提出的 Wide & Deep 模型。这一模型融合了适用于学习抽象特征的 DNN 和适用于大规模稀疏特征的逻谛斯克回归两者模型的优点,可以作为一种相对成熟的模型框架使用, 在工业界也有一定的应用。
1. 不带注意力机制的序列到序列映射模型,这一模型是所有序列到序列学习模型的基础。
2. 带注意力机制使用 scheduled sampling 改善生成质量,用来改善RNN模型在文本生成过程中的错误累积问题。
3. 带外部记忆机制的神经机器翻译,通过增强神经网络的记忆能力,来完成复杂的序列到序列学习任务。
- 3.1 [Wide & deep 点击率预估模型](https://github.com/PaddlePaddle/models/tree/develop/ctr)
- **应用领域** ## 4. 文本分类
文本生成模型实现了两个甚至是多个不定长模型之间的映射,有着广泛地应用,包括机器翻译、智能对话与问答、广告创意语料生成、自动编码(如金融画像编码)、判断多个文本串之间的语义相关性等 文本分类是自然语言处理领域最基础的任务之一,深度学习方法能够免除复杂的特征工程,直接使用原始文本作为输入,数据驱动地最优化分类准确率
- **模型配置说明** 在文本分类的例子中,我们以情感分类任务为例,提供了基于DNN的非序列文本分类模型,以及基于CNN的序列模型供大家学习和使用(基于LSTM的模型见PaddleBook中[情感分类](https://github.com/PaddlePaddle/book/blob/develop/06.understand_sentiment/README.cn.md)一课)。
[seq2seq](https://github.com/PaddlePaddle/models/tree/develop/seq2seq) | [scheduled_sampling](https://github.com/PaddlePaddle/models/tree/develop/scheduled_sampling) | [external_memory](https://github.com/PaddlePaddle/models/tree/develop/mt_with_external_memory) - 4.1 [基于 DNN / CNN 的情感分类](https://github.com/PaddlePaddle/models/tree/develop/text_classification)
## 排序学习(Learning to Rank, LTR) ## 5. 排序学习
- **介绍** 排序学习(Learning to Rank, LTR)是信息检索和搜索引擎研究的核心问题之一,通过机器学习方法学习一个分值函数对待排序的候选进行打分,再根据分值的高低确定序关系。深度神经网络可以用来建模分值函数,构成各类基于深度学习的LTR模型。
排序学习(Learning to Rank,下简称LTR)是信息检索和搜索引擎研究的核心问题之一,通过机器学习方法学习一个分值函数(Scoring Function)对待排序的候选进行打分,再根据分值的高低确定序关系。深度神经网络可以用来建模分值函数,构成各类基于深度学习的LTR模型 在排序学习的例子中,我们介绍基于 RankLoss 损失函数的 Pairwise 排序模型和基于LambdaRank损失函数的Listwise排序模型(Pointwise学习策略见PaddleBook中[推荐系统](https://github.com/PaddlePaddle/book/blob/develop/05.recommender_system/README.cn.md)一课)
以信息检索任务为例,给定查询以及检索到的候选文档列表,LTR系统需要按照查询与候选文档的相关性,对候选文档进行打分并排序。LTR学习方法可以分为三种: - 5.1 [基于 Pairwise 和 Listwise 的排序学习](https://github.com/PaddlePaddle/models/tree/develop/ltr)
- Pointwise:Pointwise 学习方法将LTR被转化为回归或是分类问题。给定查询以及一个候选文档,模型基于序数进行二分类、多分类或者回归拟合,是一种基础的LTR学习策略。 ## 6. 序列标注
- Pairwise:Pairwise学习方法将排序问题归约为对有序对(ordered pair)的分类,比Pointwise方法更近了一步。模型判断一对候选文档中,哪一个与给定查询更相关,学习的目标为是最小化误分类文档对的数量。理想情况下,如果所有文档对都能被正确的分类,那么原始的候选文档也会被正确的排序。
- Listwise:与Pointwise与Pairwise学习方法相比,Listwise方法将给定查询对应的整个候选文档集合列表(list)作为输入,直接对排序结果列表进行优化。Listwise方法在损失函数中考虑了文档排序的位置因素,是前两种方法所不具备的。
Pointwise 学习策略可参考PaddleBook的[推荐系统](https://github.com/PaddlePaddle/book/blob/develop/05.recommender_system/README.cn.md)一节。在这里,我们提供了基于RankLoss 损失函数的Pairwise 排序模型,以及基于LambdaRank 损失函数的ListWise排序模型 给定输入序列,序列标注模型为序列中每一个元素贴上一个类别标签,是自然语言处理领域最基础的任务之一。随着深度学习的不断探索和发展,利用循环神经网络学习输入序列的特征表示,条件随机场(Conditional Random Field, CRF)在特征基础上完成序列标注任务,逐渐成为解决序列标注问题的标配解决方案
- **应用领域** 在序列标注的例子中,我们以命名实体识别(Named Entity Recognition,NER)任务为例,介绍如何训练一个端到端的序列标注模型。
LTR模型在搜索排序,包括:图片搜索排序、外卖美食搜索排序、App搜索排序、酒店搜索排序等场景中有着广泛的应用。还可以扩展应用于:关键词推荐、各类业务榜单、个性化推荐等任务。 - 6.1 [命名实体识别](https://github.com/PaddlePaddle/models/tree/develop/sequence_tagging_for_ner)
- **模型配置说明** ## 7. 序列到序列学习
[Pointwise 排序模型](https://github.com/PaddlePaddle/book/blob/develop/05.recommender_system/README.cn.md) 序列到序列学习实现两个甚至是多个不定长模型之间的映射,有着广泛的应用,包括:机器翻译、智能对话与问答、广告创意语料生成、自动编码(如金融画像编码)、判断多个文本串之间的语义相关性等。
| [Pairwise 排序模型](https://github.com/PaddlePaddle/models/tree/develop/ltr) | [Listwise 排序模型](https://github.com/PaddlePaddle/models/tree/develop/ltr)
## 文本分类 在序列到序列学习的例子中,我们以机器翻译任务为例,提供了多种改进模型,供大家学习和使用。包括:不带注意力机制的序列到序列映射模型,这一模型是所有序列到序列学习模型的基础;使用 scheduled sampling 改善 RNN 模型在生成任务中的错误累积问题;带外部记忆机制的神经机器翻译,通过增强神经网络的记忆能力,来完成复杂的序列到序列学习任务。
- **介绍** - 7.1 [无注意力机制的编码器解码器模型](https://github.com/PaddlePaddle/models/tree/develop/nmt_without_attention)
文本分类是自然语言处理领域最基础的任务之一,深度学习方法能够免除复杂的特征工程,直接使用原始文本作为输入,数据驱动地最优化分类准确率。我们以情感分类任务为例,提供了基于DNN的非序列文本分类模型,基于CNN和LSTM的序列模型供大家学习和使用。
- **应用领域**
分类是机器学习基础任务之一。文本分类模型在SPAM检测,文本打标签,文本意图识别,文章质量评估,色情暴力文章识别,评论情绪识别,广告物料风险控制等领域都有着广泛的应用。
- **模型配置说明**
[text_classification](https://github.com/PaddlePaddle/models/tree/develop/text_classification)
## Copyright and License ## Copyright and License
PaddlePaddle is provided under the [Apache-2.0 license](LICENSE). PaddlePaddle is provided under the [Apache-2.0 license](LICENSE).
# 点击率预估
## 背景介绍
CTR(Click-Through Rate,点击率预估)\[[1](https://en.wikipedia.org/wiki/Click-through_rate)\] 是用来表示用户点击一个特定链接的概率,
通常被用来衡量一个在线广告系统的有效性。
当有多个广告位时,CTR 预估一般会作为排序的基准。
比如在搜索引擎的广告系统里,当用户输入一个带商业价值的搜索词(query)时,系统大体上会执行下列步骤来展示广告:
1. 召回满足 query 的广告集合
2. 业务规则和相关性过滤
3. 根据拍卖机制和 CTR 排序
4. 展出广告
可以看到,CTR 在最终排序中起到了很重要的作用。
### 发展阶段
在业内,CTR 模型经历了如下的发展阶段:
- Logistic Regression(LR) / GBDT + 特征工程
- LR + DNN 特征
- DNN + 特征工程
在发展早期时 LR 一统天下,但最近 DNN 模型由于其强大的学习能力和逐渐成熟的性能优化,
逐渐地接过 CTR 预估任务的大旗。
### LR vs DNN
下图展示了 LR 和一个 \(3x2\) 的 DNN 模型的结构:
<p align="center">
<img src="images/lr_vs_dnn.jpg" width="620" hspace='10'/> <br/>
Figure 1. LR 和 DNN 模型结构对比
</p>
LR 的蓝色箭头部分可以直接类比到 DNN 中对应的结构,可以看到 LR 和 DNN 有一些共通之处(比如权重累加),
但前者的模型复杂度在相同输入维度下比后者可能低很多(从某方面讲,模型越复杂,越有潜力学习到更复杂的信息)。
如果 LR 要达到匹敌 DNN 的学习能力,必须增加输入的维度,也就是增加特征的数量,
这也就是为何 LR 和大规模的特征工程必须绑定在一起的原因。
LR 对于 DNN 模型的优势是对大规模稀疏特征的容纳能力,包括内存和计算量等方面,工业界都有非常成熟的优化方法。
而 DNN 模型具有自己学习新特征的能力,一定程度上能够提升特征使用的效率,
这使得 DNN 模型在同样规模特征的情况下,更有可能达到更好的学习效果。
本文后面的章节会演示如何使用 PaddlePaddle 编写一个结合两者优点的模型。
## 数据和任务抽象
我们可以将 `click` 作为学习目标,任务可以有以下几种方案:
1. 直接学习 click,0,1 作二元分类
2. Learning to rank, 具体用 pairwise rank(标签 1>0)或者 listwise rank
3. 统计每个广告的点击率,将同一个 query 下的广告两两组合,点击率高的>点击率低的,做 rank 或者分类
我们直接使用第一种方法做分类任务。
我们使用 Kaggle 上 `Click-through rate prediction` 任务的数据集\[[2](https://www.kaggle.com/c/avazu-ctr-prediction/data)\] 来演示模型。
具体的特征处理方法参看 [data process](./dataset.md)
## Wide & Deep Learning Model
谷歌在 16 年提出了 Wide & Deep Learning 的模型框架,用于融合适合学习抽象特征的 DNN 和 适用于大规模稀疏特征的 LR 两种模型的优点。
### 模型简介
Wide & Deep Learning Model\[[3](#参考文献)\] 可以作为一种相对成熟的模型框架使用,
在 CTR 预估的任务中工业界也有一定的应用,因此本文将演示使用此模型来完成 CTR 预估的任务。
模型结构如下:
<p align="center">
<img src="images/wide_deep.png" width="820" hspace='10'/> <br/>
Figure 2. Wide & Deep Model
</p>
模型左边的 Wide 部分,可以容纳大规模系数特征,并且对一些特定的信息(比如 ID)有一定的记忆能力;
而模型右边的 Deep 部分,能够学习特征间的隐含关系,在相同数量的特征下有更好的学习和推导能力。
### 编写模型输入
模型只接受 3 个输入,分别是
- `dnn_input` ,也就是 Deep 部分的输入
- `lr_input` ,也就是 Wide 部分的输入
- `click` , 点击与否,作为二分类模型学习的标签
```python
dnn_merged_input = layer.data(
name='dnn_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['dnn_input']))
lr_merged_input = layer.data(
name='lr_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['lr_input']))
click = paddle.layer.data(name='click', type=dtype.dense_vector(1))
```
### 编写 Wide 部分
Wide 部分直接使用了 LR 模型,但激活函数改成了 `RELU` 来加速
```python
def build_lr_submodel():
fc = layer.fc(
input=lr_merged_input, size=1, name='lr', act=paddle.activation.Relu())
return fc
```
### 编写 Deep 部分
Deep 部分使用了标准的多层前向传导的 DNN 模型
```python
def build_dnn_submodel(dnn_layer_dims):
dnn_embedding = layer.fc(input=dnn_merged_input, size=dnn_layer_dims[0])
_input_layer = dnn_embedding
for i, dim in enumerate(dnn_layer_dims[1:]):
fc = layer.fc(
input=_input_layer,
size=dim,
act=paddle.activation.Relu(),
name='dnn-fc-%d' % i)
_input_layer = fc
return _input_layer
```
### 两者融合
两个 submodel 的最上层输出加权求和得到整个模型的输出,输出部分使用 `sigmoid` 作为激活函数,得到区间 (0,1) 的预测值,
来逼近训练数据中二元类别的分布,并最终作为 CTR 预估的值使用。
```python
# conbine DNN and LR submodels
def combine_submodels(dnn, lr):
merge_layer = layer.concat(input=[dnn, lr])
fc = layer.fc(
input=merge_layer,
size=1,
name='output',
# use sigmoid function to approximate ctr, wihch is a float value between 0 and 1.
act=paddle.activation.Sigmoid())
return fc
```
### 训练任务的定义
```python
dnn = build_dnn_submodel(dnn_layer_dims)
lr = build_lr_submodel()
output = combine_submodels(dnn, lr)
# ==============================================================================
# cost and train period
# ==============================================================================
classification_cost = paddle.layer.multi_binary_label_cross_entropy_cost(
input=output, label=click)
paddle.init(use_gpu=False, trainer_count=11)
params = paddle.parameters.create(classification_cost)
optimizer = paddle.optimizer.Momentum(momentum=0)
trainer = paddle.trainer.SGD(
cost=classification_cost, parameters=params, update_equation=optimizer)
dataset = AvazuDataset(train_data_path, n_records_as_test=test_set_size)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
logging.warning("Pass %d, Samples %d, Cost %f" % (
event.pass_id, event.batch_id * batch_size, event.cost))
if event.batch_id % 1000 == 0:
result = trainer.test(
reader=paddle.batch(dataset.test, batch_size=1000),
feeding=field_index)
logging.warning("Test %d-%d, Cost %f" % (event.pass_id, event.batch_id,
result.cost))
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(dataset.train, buf_size=500),
batch_size=batch_size),
feeding=field_index,
event_handler=event_handler,
num_passes=100)
```
## 运行训练和测试
训练模型需要如下步骤:
1. 下载训练数据,可以使用 Kaggle 上 CTR 比赛的数据\[[2](#参考文献)\]
1.[Kaggle CTR](https://www.kaggle.com/c/avazu-ctr-prediction/data) 下载 train.gz
2. 解压 train.gz 得到 train.txt
2. 执行 `python train.py --train_data_path train.txt` ,开始训练
上面第2个步骤可以为 `train.py` 填充命令行参数来定制模型的训练过程,具体的命令行参数及用法如下
```
usage: train.py [-h] --train_data_path TRAIN_DATA_PATH
[--batch_size BATCH_SIZE] [--test_set_size TEST_SET_SIZE]
[--num_passes NUM_PASSES]
[--num_lines_to_detact NUM_LINES_TO_DETACT]
PaddlePaddle CTR example
optional arguments:
-h, --help show this help message and exit
--train_data_path TRAIN_DATA_PATH
path of training dataset
--batch_size BATCH_SIZE
size of mini-batch (default:10000)
--test_set_size TEST_SET_SIZE
size of the validation dataset(default: 10000)
--num_passes NUM_PASSES
number of passes to train
--num_lines_to_detact NUM_LINES_TO_DETACT
number of records to detect dataset's meta info
```
## 参考文献
1. <https://en.wikipedia.org/wiki/Click-through_rate>
2. <https://www.kaggle.com/c/avazu-ctr-prediction/data>
3. Cheng H T, Koc L, Harmsen J, et al. [Wide & deep learning for recommender systems](https://arxiv.org/pdf/1606.07792.pdf)[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.
import sys
import csv
import numpy as np
'''
The fields of the dataset are:
0. id: ad identifier
1. click: 0/1 for non-click/click
2. hour: format is YYMMDDHH, so 14091123 means 23:00 on Sept. 11, 2014 UTC.
3. C1 -- anonymized categorical variable
4. banner_pos
5. site_id
6. site_domain
7. site_category
8. app_id
9. app_domain
10. app_category
11. device_id
12. device_ip
13. device_model
14. device_type
15. device_conn_type
16. C14-C21 -- anonymized categorical variables
We will treat following fields as categorical features:
- C1
- banner_pos
- site_category
- app_category
- device_type
- device_conn_type
and some other features as id features:
- id
- site_id
- app_id
- device_id
The `hour` field will be treated as a continuous feature and will be transformed
to one-hot representation which has 24 bits.
'''
feature_dims = {}
categorial_features = ('C1 banner_pos site_category app_category ' +
'device_type device_conn_type').split()
id_features = 'id site_id app_id device_id _device_id_cross_site_id'.split()
def get_all_field_names(mode=0):
'''
@mode: int
0 for train, 1 for test
@return: list of str
'''
return categorial_features + ['hour'] + id_features + ['click'] \
if mode == 0 else []
class CategoryFeatureGenerator(object):
'''
Generator category features.
Register all records by calling `register` first, then call `gen` to generate
one-hot representation for a record.
'''
def __init__(self):
self.dic = {'unk': 0}
self.counter = 1
def register(self, key):
'''
Register record.
'''
if key not in self.dic:
self.dic[key] = self.counter
self.counter += 1
def size(self):
return len(self.dic)
def gen(self, key):
'''
Generate one-hot representation for a record.
'''
if key not in self.dic:
res = self.dic['unk']
else:
res = self.dic[key]
return [res]
def __repr__(self):
return '<CategoryFeatureGenerator %d>' % len(self.dic)
class IDfeatureGenerator(object):
def __init__(self, max_dim, cross_fea0=None, cross_fea1=None):
'''
@max_dim: int
Size of the id elements' space
'''
self.max_dim = max_dim
self.cross_fea0 = cross_fea0
self.cross_fea1 = cross_fea1
def gen(self, key):
'''
Generate one-hot representation for records
'''
return [hash(key) % self.max_dim]
def gen_cross_fea(self, fea1, fea2):
key = str(fea1) + str(fea2)
return self.gen(key)
def size(self):
return self.max_dim
class ContinuousFeatureGenerator(object):
def __init__(self, n_intervals):
self.min = sys.maxint
self.max = sys.minint
self.n_intervals = n_intervals
def register(self, val):
self.min = min(self.minint, val)
self.max = max(self.maxint, val)
def gen(self, val):
self.len_part = (self.max - self.min) / self.n_intervals
return (val - self.min) / self.len_part
# init all feature generators
fields = {}
for key in categorial_features:
fields[key] = CategoryFeatureGenerator()
for key in id_features:
# for cross features
if 'cross' in key:
feas = key[1:].split('_cross_')
fields[key] = IDfeatureGenerator(10000000, *feas)
# for normal ID features
else:
fields[key] = IDfeatureGenerator(10000)
# used as feed_dict in PaddlePaddle
field_index = dict((key, id)
for id, key in enumerate(['dnn_input', 'lr_input', 'click']))
def detect_dataset(path, topn, id_fea_space=10000):
'''
Parse the first `topn` records to collect meta information of this dataset.
NOTE the records should be randomly shuffled first.
'''
# create categorical statis objects.
with open(path, 'rb') as csvfile:
reader = csv.DictReader(csvfile)
for row_id, row in enumerate(reader):
if row_id > topn:
break
for key in categorial_features:
fields[key].register(row[key])
for key, item in fields.items():
feature_dims[key] = item.size()
#for key in id_features:
#feature_dims[key] = id_fea_space
feature_dims['hour'] = 24
feature_dims['click'] = 1
feature_dims['dnn_input'] = np.sum(
feature_dims[key] for key in categorial_features + ['hour']) + 1
feature_dims['lr_input'] = np.sum(feature_dims[key]
for key in id_features) + 1
return feature_dims
def concat_sparse_vectors(inputs, dims):
'''
Concaterate more than one sparse vectors into one.
@inputs: list
list of sparse vector
@dims: list of int
dimention of each sparse vector
'''
res = []
assert len(inputs) == len(dims)
start = 0
for no, vec in enumerate(inputs):
for v in vec:
res.append(v + start)
start += dims[no]
return res
class AvazuDataset(object):
'''
Load AVAZU dataset as train set.
'''
TRAIN_MODE = 0
TEST_MODE = 1
def __init__(self, train_path, n_records_as_test=-1):
self.train_path = train_path
self.n_records_as_test = n_records_as_test
# task model: 0 train, 1 test
self.mode = 0
def train(self):
self.mode = self.TRAIN_MODE
return self._parse(self.train_path, skip_n_lines=self.n_records_as_test)
def test(self):
self.mode = self.TEST_MODE
return self._parse(self.train_path, top_n_lines=self.n_records_as_test)
def _parse(self, path, skip_n_lines=-1, top_n_lines=-1):
with open(path, 'rb') as csvfile:
reader = csv.DictReader(csvfile)
categorial_dims = [
feature_dims[key] for key in categorial_features + ['hour']
]
id_dims = [feature_dims[key] for key in id_features]
for row_id, row in enumerate(reader):
if skip_n_lines > 0 and row_id < skip_n_lines:
continue
if top_n_lines > 0 and row_id > top_n_lines:
break
record = []
for key in categorial_features:
record.append(fields[key].gen(row[key]))
record.append([int(row['hour'][-2:])])
dense_input = concat_sparse_vectors(record, categorial_dims)
record = []
for key in id_features:
if 'cross' not in key:
record.append(fields[key].gen(row[key]))
else:
fea0 = fields[key].cross_fea0
fea1 = fields[key].cross_fea1
record.append(
fields[key].gen_cross_fea(row[fea0], row[fea1]))
sparse_input = concat_sparse_vectors(record, id_dims)
record = [dense_input, sparse_input]
record.append(list((int(row['click']), )))
yield record
if __name__ == '__main__':
path = 'train.txt'
print detect_dataset(path, 400000)
filereader = AvazuDataset(path)
for no, rcd in enumerate(filereader.train()):
print no, rcd
if no > 1000: break
# 数据及处理
## 数据集介绍
数据集使用 `csv` 格式存储,其中各个字段内容如下:
- `id` : ad identifier
- `click` : 0/1 for non-click/click
- `hour` : format is YYMMDDHH, so 14091123 means 23:00 on Sept. 11, 2014 UTC.
- `C1` : anonymized categorical variable
- `banner_pos`
- `site_id`
- `site_domain`
- `site_category`
- `app_id`
- `app_domain`
- `app_category`
- `device_id`
- `device_ip`
- `device_model`
- `device_type`
- `device_conn_type`
- `C14-C21` : anonymized categorical variables
## 特征提取
下面我们会简单演示几种特征的提取方式。
原始数据中的特征可以分为以下几类:
1. ID 类特征(稀疏,数量多)
- `id`
- `site_id`
- `app_id`
- `device_id`
2. 类别类特征(稀疏,但数量有限)
- `C1`
- `site_category`
- `device_type`
- `C14-C21`
3. 数值型特征转化为类别型特征
- hour (可以转化成数值,也可以按小时为单位转化为类别)
### 类别类特征
类别类特征的提取方法有以下两种:
1. One-hot 表示作为特征
2. 类似词向量,用一个 Embedding 将每个类别映射到对应的向量
### ID 类特征
ID 类特征的特点是稀疏数据,但量比较大,直接使用 One-hot 表示时维度过大。
一般会作如下处理:
1. 确定表示的最大维度 N
2. newid = id % N
3. 用 newid 作为类别类特征使用
上面的方法尽管存在一定的碰撞概率,但能够处理任意数量的 ID 特征,并保留一定的效果\[[2](#参考文献)\]
### 数值型特征
一般会做如下处理:
- 归一化,直接作为特征输入模型
- 用区间分割处理成类别类特征,稀疏化表示,模糊细微上的差别
## 特征处理
### 类别型特征
类别型特征有有限多种值,在模型中,我们一般使用 Embedding将每种值映射为连续值的向量。
这种特征在输入到模型时,一般使用 One-hot 表示,相关处理方法如下:
```python
class CategoryFeatureGenerator(object):
'''
Generator category features.
Register all records by calling ~register~ first, then call ~gen~ to generate
one-hot representation for a record.
'''
def __init__(self):
self.dic = {'unk': 0}
self.counter = 1
def register(self, key):
'''
Register record.
'''
if key not in self.dic:
self.dic[key] = self.counter
self.counter += 1
def size(self):
return len(self.dic)
def gen(self, key):
'''
Generate one-hot representation for a record.
'''
if key not in self.dic:
res = self.dic['unk']
else:
res = self.dic[key]
return [res]
def __repr__(self):
return '<CategoryFeatureGenerator %d>' % len(self.dic)
```
`CategoryFeatureGenerator` 需要先扫描数据集,得到该类别对应的项集合,之后才能开始生成特征。
我们的实验数据集\[[3](https://www.kaggle.com/c/avazu-ctr-prediction/data)\]已经经过shuffle,可以扫描前面一定数目的记录来近似总的类别项集合(等价于随机抽样),
对于没有抽样上的低频类别项,可以用一个 UNK 的特殊值表示。
```python
fields = {}
for key in categorial_features:
fields[key] = CategoryFeatureGenerator()
def detect_dataset(path, topn, id_fea_space=10000):
'''
Parse the first `topn` records to collect meta information of this dataset.
NOTE the records should be randomly shuffled first.
'''
# create categorical statis objects.
with open(path, 'rb') as csvfile:
reader = csv.DictReader(csvfile)
for row_id, row in enumerate(reader):
if row_id > topn:
break
for key in categorial_features:
fields[key].register(row[key])
```
`CategoryFeatureGenerator` 在注册得到数据集中对应类别信息后,可以对相应记录生成对应的特征表示:
```python
record = []
for key in categorial_features:
record.append(fields[key].gen(row[key]))
```
本任务中,类别类特征会输入到 DNN 中使用。
### ID 类特征
ID 类特征代稀疏值,且值的空间很大的情况,一般用模操作规约到一个有限空间,
之后可以当成类别类特征使用,这里我们会将 ID 类特征输入到 LR 模型中使用。
```python
class IDfeatureGenerator(object):
def __init__(self, max_dim):
'''
@max_dim: int
Size of the id elements' space
'''
self.max_dim = max_dim
def gen(self, key):
'''
Generate one-hot representation for records
'''
return [hash(key) % self.max_dim]
def size(self):
return self.max_dim
```
`IDfeatureGenerator` 不需要预先初始化,可以直接生成特征,比如
```python
record = []
for key in id_features:
if 'cross' not in key:
record.append(fields[key].gen(row[key]))
```
### 交叉类特征
LR 模型作为 Wide & Deep model 的 `wide` 部分,可以输入很 wide 的数据(特征空间的维度很大),
为了充分利用这个优势,我们将演示交叉组合特征构建成更大维度特征的情况,之后塞入到模型中训练。
这里我们依旧使用模操作来约束最终组合出的特征空间的大小,具体实现是直接在 `IDfeatureGenerator` 中添加一个 `gen_cross_feature` 的方法:
```python
def gen_cross_fea(self, fea1, fea2):
key = str(fea1) + str(fea2)
return self.gen(key)
```
比如,我们觉得原始数据中, `device_id``site_id` 有一些关联(比如某个 device 倾向于浏览特定 site),
我们通过组合出两者组合来捕捉这类信息。
```python
fea0 = fields[key].cross_fea0
fea1 = fields[key].cross_fea1
record.append(
fields[key].gen_cross_fea(row[fea0], row[fea1]))
```
### 特征维度
#### Deep submodel(DNN)特征
| feature | dimention |
|------------------|-----------|
| app_category | 21 |
| site_category | 22 |
| device_conn_type | 5 |
| hour | 24 |
| banner_pos | 7 |
| **Total** | 79 |
#### Wide submodel(LR)特征
| Feature | Dimention |
|---------------------|-----------|
| id | 10000 |
| site_id | 10000 |
| app_id | 10000 |
| device_id | 10000 |
| device_id X site_id | 1000000 |
| **Total** | 1,040,000 |
## 输入到 PaddlePaddle 中
Deep 和 Wide 两部分均以 `sparse_binary_vector` 的格式 \[[1](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/api/v1/data_provider/pydataprovider2_en.rst)\] 输入,输入前需要将相关特征拼合,模型最终只接受 3 个 input,
分别是
1. `dnn input` ,DNN 的输入
2. `lr input` , LR 的输入
3. `click` , 标签
拼合特征的方法:
```python
def concat_sparse_vectors(inputs, dims):
'''
concaterate sparse vectors into one
@inputs: list
list of sparse vector
@dims: list of int
dimention of each sparse vector
'''
res = []
assert len(inputs) == len(dims)
start = 0
for no, vec in enumerate(inputs):
for v in vec:
res.append(v + start)
start += dims[no]
return res
```
生成最终特征的代码如下:
```python
# dimentions of the features
categorial_dims = [
feature_dims[key] for key in categorial_features + ['hour']
]
id_dims = [feature_dims[key] for key in id_features]
dense_input = concat_sparse_vectors(record, categorial_dims)
sparse_input = concat_sparse_vectors(record, id_dims)
record = [dense_input, sparse_input]
record.append(list((int(row['click']), )))
yield record
```
## 参考文献
1. <https://github.com/PaddlePaddle/Paddle/blob/develop/doc/api/v1/data_provider/pydataprovider2_en.rst>
2. Mikolov T, Deoras A, Povey D, et al. [Strategies for training large scale neural network language models](https://www.researchgate.net/profile/Lukas_Burget/publication/241637478_Strategies_for_training_large_scale_neural_network_language_models/links/542c14960cf27e39fa922ed3.pdf)[C]//Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on. IEEE, 2011: 196-201.
3. <https://www.kaggle.com/c/avazu-ctr-prediction/data>
<html>
<head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
<script type="text/javascript" src="../.tools/theme/marked.js">
</script>
<link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
<script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
<link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
<link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
}
</style>
<body>
<div id="context" class="container-fluid markdown-body">
</div>
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# 点击率预估
## 背景介绍
CTR(Click-Through Rate,点击率预估)\[[1](https://en.wikipedia.org/wiki/Click-through_rate)\] 是用来表示用户点击一个特定链接的概率,
通常被用来衡量一个在线广告系统的有效性。
当有多个广告位时,CTR 预估一般会作为排序的基准。
比如在搜索引擎的广告系统里,当用户输入一个带商业价值的搜索词(query)时,系统大体上会执行下列步骤来展示广告:
1. 召回满足 query 的广告集合
2. 业务规则和相关性过滤
3. 根据拍卖机制和 CTR 排序
4. 展出广告
可以看到,CTR 在最终排序中起到了很重要的作用。
### 发展阶段
在业内,CTR 模型经历了如下的发展阶段:
- Logistic Regression(LR) / GBDT + 特征工程
- LR + DNN 特征
- DNN + 特征工程
在发展早期时 LR 一统天下,但最近 DNN 模型由于其强大的学习能力和逐渐成熟的性能优化,
逐渐地接过 CTR 预估任务的大旗。
### LR vs DNN
下图展示了 LR 和一个 \(3x2\) 的 DNN 模型的结构:
<p align="center">
<img src="images/lr_vs_dnn.jpg" width="620" hspace='10'/> <br/>
Figure 1. LR 和 DNN 模型结构对比
</p>
LR 的蓝色箭头部分可以直接类比到 DNN 中对应的结构,可以看到 LR 和 DNN 有一些共通之处(比如权重累加),
但前者的模型复杂度在相同输入维度下比后者可能低很多(从某方面讲,模型越复杂,越有潜力学习到更复杂的信息)。
如果 LR 要达到匹敌 DNN 的学习能力,必须增加输入的维度,也就是增加特征的数量,
这也就是为何 LR 和大规模的特征工程必须绑定在一起的原因。
LR 对于 DNN 模型的优势是对大规模稀疏特征的容纳能力,包括内存和计算量等方面,工业界都有非常成熟的优化方法。
而 DNN 模型具有自己学习新特征的能力,一定程度上能够提升特征使用的效率,
这使得 DNN 模型在同样规模特征的情况下,更有可能达到更好的学习效果。
本文后面的章节会演示如何使用 PaddlePaddle 编写一个结合两者优点的模型。
## 数据和任务抽象
我们可以将 `click` 作为学习目标,任务可以有以下几种方案:
1. 直接学习 click,0,1 作二元分类
2. Learning to rank, 具体用 pairwise rank(标签 1>0)或者 listwise rank
3. 统计每个广告的点击率,将同一个 query 下的广告两两组合,点击率高的>点击率低的,做 rank 或者分类
我们直接使用第一种方法做分类任务。
我们使用 Kaggle 上 `Click-through rate prediction` 任务的数据集\[[2](https://www.kaggle.com/c/avazu-ctr-prediction/data)\] 来演示模型。
具体的特征处理方法参看 [data process](./dataset.md)
## Wide & Deep Learning Model
谷歌在 16 年提出了 Wide & Deep Learning 的模型框架,用于融合适合学习抽象特征的 DNN 和 适用于大规模稀疏特征的 LR 两种模型的优点。
### 模型简介
Wide & Deep Learning Model\[[3](#参考文献)\] 可以作为一种相对成熟的模型框架使用,
在 CTR 预估的任务中工业界也有一定的应用,因此本文将演示使用此模型来完成 CTR 预估的任务。
模型结构如下:
<p align="center">
<img src="images/wide_deep.png" width="820" hspace='10'/> <br/>
Figure 2. Wide & Deep Model
</p>
模型左边的 Wide 部分,可以容纳大规模系数特征,并且对一些特定的信息(比如 ID)有一定的记忆能力;
而模型右边的 Deep 部分,能够学习特征间的隐含关系,在相同数量的特征下有更好的学习和推导能力。
### 编写模型输入
模型只接受 3 个输入,分别是
- `dnn_input` ,也就是 Deep 部分的输入
- `lr_input` ,也就是 Wide 部分的输入
- `click` , 点击与否,作为二分类模型学习的标签
```python
dnn_merged_input = layer.data(
name='dnn_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['dnn_input']))
lr_merged_input = layer.data(
name='lr_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['lr_input']))
click = paddle.layer.data(name='click', type=dtype.dense_vector(1))
```
### 编写 Wide 部分
Wide 部分直接使用了 LR 模型,但激活函数改成了 `RELU` 来加速
```python
def build_lr_submodel():
fc = layer.fc(
input=lr_merged_input, size=1, name='lr', act=paddle.activation.Relu())
return fc
```
### 编写 Deep 部分
Deep 部分使用了标准的多层前向传导的 DNN 模型
```python
def build_dnn_submodel(dnn_layer_dims):
dnn_embedding = layer.fc(input=dnn_merged_input, size=dnn_layer_dims[0])
_input_layer = dnn_embedding
for i, dim in enumerate(dnn_layer_dims[1:]):
fc = layer.fc(
input=_input_layer,
size=dim,
act=paddle.activation.Relu(),
name='dnn-fc-%d' % i)
_input_layer = fc
return _input_layer
```
### 两者融合
两个 submodel 的最上层输出加权求和得到整个模型的输出,输出部分使用 `sigmoid` 作为激活函数,得到区间 (0,1) 的预测值,
来逼近训练数据中二元类别的分布,并最终作为 CTR 预估的值使用。
```python
# conbine DNN and LR submodels
def combine_submodels(dnn, lr):
merge_layer = layer.concat(input=[dnn, lr])
fc = layer.fc(
input=merge_layer,
size=1,
name='output',
# use sigmoid function to approximate ctr, wihch is a float value between 0 and 1.
act=paddle.activation.Sigmoid())
return fc
```
### 训练任务的定义
```python
dnn = build_dnn_submodel(dnn_layer_dims)
lr = build_lr_submodel()
output = combine_submodels(dnn, lr)
# ==============================================================================
# cost and train period
# ==============================================================================
classification_cost = paddle.layer.multi_binary_label_cross_entropy_cost(
input=output, label=click)
paddle.init(use_gpu=False, trainer_count=11)
params = paddle.parameters.create(classification_cost)
optimizer = paddle.optimizer.Momentum(momentum=0)
trainer = paddle.trainer.SGD(
cost=classification_cost, parameters=params, update_equation=optimizer)
dataset = AvazuDataset(train_data_path, n_records_as_test=test_set_size)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
logging.warning("Pass %d, Samples %d, Cost %f" % (
event.pass_id, event.batch_id * batch_size, event.cost))
if event.batch_id % 1000 == 0:
result = trainer.test(
reader=paddle.batch(dataset.test, batch_size=1000),
feeding=field_index)
logging.warning("Test %d-%d, Cost %f" % (event.pass_id, event.batch_id,
result.cost))
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(dataset.train, buf_size=500),
batch_size=batch_size),
feeding=field_index,
event_handler=event_handler,
num_passes=100)
```
## 运行训练和测试
训练模型需要如下步骤:
1. 下载训练数据,可以使用 Kaggle 上 CTR 比赛的数据\[[2](#参考文献)\]
1. 从 [Kaggle CTR](https://www.kaggle.com/c/avazu-ctr-prediction/data) 下载 train.gz
2. 解压 train.gz 得到 train.txt
2. 执行 `python train.py --train_data_path train.txt` ,开始训练
上面第2个步骤可以为 `train.py` 填充命令行参数来定制模型的训练过程,具体的命令行参数及用法如下
```
usage: train.py [-h] --train_data_path TRAIN_DATA_PATH
[--batch_size BATCH_SIZE] [--test_set_size TEST_SET_SIZE]
[--num_passes NUM_PASSES]
[--num_lines_to_detact NUM_LINES_TO_DETACT]
PaddlePaddle CTR example
optional arguments:
-h, --help show this help message and exit
--train_data_path TRAIN_DATA_PATH
path of training dataset
--batch_size BATCH_SIZE
size of mini-batch (default:10000)
--test_set_size TEST_SET_SIZE
size of the validation dataset(default: 10000)
--num_passes NUM_PASSES
number of passes to train
--num_lines_to_detact NUM_LINES_TO_DETACT
number of records to detect dataset's meta info
```
## 参考文献
1. <https://en.wikipedia.org/wiki/Click-through_rate>
2. <https://www.kaggle.com/c/avazu-ctr-prediction/data>
3. Cheng H T, Koc L, Harmsen J, et al. [Wide & deep learning for recommender systems](https://arxiv.org/pdf/1606.07792.pdf)[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.
</div>
<!-- You can change the lines below now. -->
<script type="text/javascript">
marked.setOptions({
renderer: new marked.Renderer(),
gfm: true,
breaks: false,
smartypants: true,
highlight: function(code, lang) {
code = code.replace(/&amp;/g, "&")
code = code.replace(/&gt;/g, ">")
code = code.replace(/&lt;/g, "<")
code = code.replace(/&nbsp;/g, " ")
return hljs.highlightAuto(code, [lang]).value;
}
});
document.getElementById("context").innerHTML = marked(
document.getElementById("markdown").innerHTML)
</script>
</body>
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import logging
import paddle.v2 as paddle
from paddle.v2 import layer
from paddle.v2 import data_type as dtype
from data_provider import field_index, detect_dataset, AvazuDataset
parser = argparse.ArgumentParser(description="PaddlePaddle CTR example")
parser.add_argument(
'--train_data_path',
type=str,
required=True,
help="path of training dataset")
parser.add_argument(
'--batch_size',
type=int,
default=10000,
help="size of mini-batch (default:10000)")
parser.add_argument(
'--test_set_size',
type=int,
default=10000,
help="size of the validation dataset(default: 10000)")
parser.add_argument(
'--num_passes', type=int, default=10, help="number of passes to train")
parser.add_argument(
'--num_lines_to_detact',
type=int,
default=500000,
help="number of records to detect dataset's meta info")
args = parser.parse_args()
dnn_layer_dims = [128, 64, 32, 1]
data_meta_info = detect_dataset(args.train_data_path, args.num_lines_to_detact)
logging.warning('detect categorical fields in dataset %s' %
args.train_data_path)
for key, item in data_meta_info.items():
logging.warning(' - {}\t{}'.format(key, item))
paddle.init(use_gpu=False, trainer_count=1)
# ==============================================================================
# input layers
# ==============================================================================
dnn_merged_input = layer.data(
name='dnn_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['dnn_input']))
lr_merged_input = layer.data(
name='lr_input',
type=paddle.data_type.sparse_binary_vector(data_meta_info['lr_input']))
click = paddle.layer.data(name='click', type=dtype.dense_vector(1))
# ==============================================================================
# network structure
# ==============================================================================
def build_dnn_submodel(dnn_layer_dims):
dnn_embedding = layer.fc(input=dnn_merged_input, size=dnn_layer_dims[0])
_input_layer = dnn_embedding
for i, dim in enumerate(dnn_layer_dims[1:]):
fc = layer.fc(
input=_input_layer,
size=dim,
act=paddle.activation.Relu(),
name='dnn-fc-%d' % i)
_input_layer = fc
return _input_layer
# config LR submodel
def build_lr_submodel():
fc = layer.fc(
input=lr_merged_input, size=1, name='lr', act=paddle.activation.Relu())
return fc
# conbine DNN and LR submodels
def combine_submodels(dnn, lr):
merge_layer = layer.concat(input=[dnn, lr])
fc = layer.fc(
input=merge_layer,
size=1,
name='output',
# use sigmoid function to approximate ctr rate, a float value between 0 and 1.
act=paddle.activation.Sigmoid())
return fc
dnn = build_dnn_submodel(dnn_layer_dims)
lr = build_lr_submodel()
output = combine_submodels(dnn, lr)
# ==============================================================================
# cost and train period
# ==============================================================================
classification_cost = paddle.layer.multi_binary_label_cross_entropy_cost(
input=output, label=click)
params = paddle.parameters.create(classification_cost)
optimizer = paddle.optimizer.Momentum(momentum=0.01)
trainer = paddle.trainer.SGD(
cost=classification_cost, parameters=params, update_equation=optimizer)
dataset = AvazuDataset(
args.train_data_path, n_records_as_test=args.test_set_size)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
num_samples = event.batch_id * args.batch_size
if event.batch_id % 100 == 0:
logging.warning("Pass %d, Samples %d, Cost %f" %
(event.pass_id, num_samples, event.cost))
if event.batch_id % 1000 == 0:
result = trainer.test(
reader=paddle.batch(dataset.test, batch_size=args.batch_size),
feeding=field_index)
logging.warning("Test %d-%d, Cost %f" %
(event.pass_id, event.batch_id, result.cost))
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(dataset.train, buf_size=500),
batch_size=args.batch_size),
feeding=field_index,
event_handler=event_handler,
num_passes=args.num_passes)
# Deep Speech 2 on PaddlePaddle
## Installation
Please replace `$PADDLE_INSTALL_DIR` with your own paddle installation directory.
```
pip install -r requirements.txt
export LD_LIBRARY_PATH=$PADDLE_INSTALL_DIR/Paddle/third_party/install/warpctc/lib:$LD_LIBRARY_PATH
```
For some machines, we also need to install libsndfile1. Details to be added.
## Usage
### Preparing Data
```
cd datasets
sh run_all.sh
cd ..
```
`sh run_all.sh` prepares all ASR datasets (currently, only LibriSpeech available). After running, we have several summarization manifest files in json-format.
A manifest file summarizes a speech data set, with each line containing the meta data (i.e. audio filepath, transcript text, audio duration) of each audio file within the data set, in json format. Manifest file serves as an interface informing our system of where and what to read the speech samples.
More help for arguments:
```
python datasets/librispeech/librispeech.py --help
```
### Preparing for Training
```
python compute_mean_std.py
```
`python compute_mean_std.py` computes mean and stdandard deviation for audio features, and save them to a file with a default name `./mean_std.npz`. This file will be used in both training and inferencing.
More help for arguments:
```
python compute_mean_std.py --help
```
### Training
For GPU Training:
```
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --trainer_count 4
```
For CPU Training:
```
python train.py --trainer_count 8 --use_gpu False
```
More help for arguments:
```
python train.py --help
```
### Inferencing
```
CUDA_VISIBLE_DEVICES=0 python infer.py
```
More help for arguments:
```
python infer.py --help
```
"""Compute mean and std for feature normalizer, and save to file."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from data_utils.normalizer import FeatureNormalizer
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.audio_featurizer import AudioFeaturizer
parser = argparse.ArgumentParser(
description='Computing mean and stddev for feature normalizer.')
parser.add_argument(
"--manifest_path",
default='datasets/manifest.train',
type=str,
help="Manifest path for computing normalizer's mean and stddev."
"(default: %(default)s)")
parser.add_argument(
"--num_samples",
default=2000,
type=int,
help="Number of samples for computing mean and stddev. "
"(default: %(default)s)")
parser.add_argument(
"--augmentation_config",
default='{}',
type=str,
help="Augmentation configuration in json-format. "
"(default: %(default)s)")
parser.add_argument(
"--output_file",
default='mean_std.npz',
type=str,
help="Filepath to write mean and std to (.npz)."
"(default: %(default)s)")
args = parser.parse_args()
def main():
augmentation_pipeline = AugmentationPipeline(args.augmentation_config)
audio_featurizer = AudioFeaturizer()
def augment_and_featurize(audio_segment):
augmentation_pipeline.transform_audio(audio_segment)
return audio_featurizer.featurize(audio_segment)
normalizer = FeatureNormalizer(
mean_std_filepath=None,
manifest_path=args.manifest_path,
featurize_func=augment_and_featurize,
num_samples=args.num_samples)
normalizer.write_to_file(args.output_file)
if __name__ == '__main__':
main()
"""Contains the audio segment class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import io
import soundfile
class AudioSegment(object):
"""Monaural audio segment abstraction.
:param samples: Audio samples [num_samples x num_channels].
:type samples: ndarray.float32
:param sample_rate: Audio sample rate.
:type sample_rate: int
:raises TypeError: If the sample data type is not float or int.
"""
def __init__(self, samples, sample_rate):
"""Create audio segment from samples.
Samples are convert float32 internally, with int scaled to [-1, 1].
"""
self._samples = self._convert_samples_to_float32(samples)
self._sample_rate = sample_rate
if self._samples.ndim >= 2:
self._samples = np.mean(self._samples, 1)
def __eq__(self, other):
"""Return whether two objects are equal."""
if type(other) is not type(self):
return False
if self._sample_rate != other._sample_rate:
return False
if self._samples.shape != other._samples.shape:
return False
if np.any(self.samples != other._samples):
return False
return True
def __ne__(self, other):
"""Return whether two objects are unequal."""
return not self.__eq__(other)
def __str__(self):
"""Return human-readable representation of segment."""
return ("%s: num_samples=%d, sample_rate=%d, duration=%.2fsec, "
"rms=%.2fdB" % (type(self), self.num_samples, self.sample_rate,
self.duration, self.rms_db))
@classmethod
def from_file(cls, file):
"""Create audio segment from audio file.
:param filepath: Filepath or file object to audio file.
:type filepath: basestring|file
:return: Audio segment instance.
:rtype: AudioSegment
"""
samples, sample_rate = soundfile.read(file, dtype='float32')
return cls(samples, sample_rate)
@classmethod
def from_bytes(cls, bytes):
"""Create audio segment from a byte string containing audio samples.
:param bytes: Byte string containing audio samples.
:type bytes: str
:return: Audio segment instance.
:rtype: AudioSegment
"""
samples, sample_rate = soundfile.read(
io.BytesIO(bytes), dtype='float32')
return cls(samples, sample_rate)
def to_wav_file(self, filepath, dtype='float32'):
"""Save audio segment to disk as wav file.
:param filepath: WAV filepath or file object to save the
audio segment.
:type filepath: basestring|file
:param dtype: Subtype for audio file. Options: 'int16', 'int32',
'float32', 'float64'. Default is 'float32'.
:type dtype: str
:raises TypeError: If dtype is not supported.
"""
samples = self._convert_samples_from_float32(self._samples, dtype)
subtype_map = {
'int16': 'PCM_16',
'int32': 'PCM_32',
'float32': 'FLOAT',
'float64': 'DOUBLE'
}
soundfile.write(
filepath,
samples,
self._sample_rate,
format='WAV',
subtype=subtype_map[dtype])
def to_bytes(self, dtype='float32'):
"""Create a byte string containing the audio content.
:param dtype: Data type for export samples. Options: 'int16', 'int32',
'float32', 'float64'. Default is 'float32'.
:type dtype: str
:return: Byte string containing audio content.
:rtype: str
"""
samples = self._convert_samples_from_float32(self._samples, dtype)
return samples.tostring()
def apply_gain(self, gain):
"""Apply gain in decibels to samples.
Note that this is an in-place transformation.
:param gain: Gain in decibels to apply to samples.
:type gain: float
"""
self._samples *= 10.**(gain / 20.)
def change_speed(self, speed_rate):
"""Change the audio speed by linear interpolation.
Note that this is an in-place transformation.
:param speed_rate: Rate of speed change:
speed_rate > 1.0, speed up the audio;
speed_rate = 1.0, unchanged;
speed_rate < 1.0, slow down the audio;
speed_rate <= 0.0, not allowed, raise ValueError.
:type speed_rate: float
:raises ValueError: If speed_rate <= 0.0.
"""
if speed_rate <= 0:
raise ValueError("speed_rate should be greater than zero.")
old_length = self._samples.shape[0]
new_length = int(old_length / speed_rate)
old_indices = np.arange(old_length)
new_indices = np.linspace(start=0, stop=old_length, num=new_length)
self._samples = np.interp(new_indices, old_indices, self._samples)
def normalize(self, target_sample_rate):
raise NotImplementedError()
def resample(self, target_sample_rate):
raise NotImplementedError()
def pad_silence(self, duration, sides='both'):
raise NotImplementedError()
def subsegment(self, start_sec=None, end_sec=None):
raise NotImplementedError()
def convolve(self, filter, allow_resample=False):
raise NotImplementedError()
def convolve_and_normalize(self, filter, allow_resample=False):
raise NotImplementedError()
@property
def samples(self):
"""Return audio samples.
:return: Audio samples.
:rtype: ndarray
"""
return self._samples.copy()
@property
def sample_rate(self):
"""Return audio sample rate.
:return: Audio sample rate.
:rtype: int
"""
return self._sample_rate
@property
def num_samples(self):
"""Return number of samples.
:return: Number of samples.
:rtype: int
"""
return self._samples.shape(0)
@property
def duration(self):
"""Return audio duration.
:return: Audio duration in seconds.
:rtype: float
"""
return self._samples.shape[0] / float(self._sample_rate)
@property
def rms_db(self):
"""Return root mean square energy of the audio in decibels.
:return: Root mean square energy in decibels.
:rtype: float
"""
# square root => multiply by 10 instead of 20 for dBs
mean_square = np.mean(self._samples**2)
return 10 * np.log10(mean_square)
def _convert_samples_to_float32(self, samples):
"""Convert sample type to float32.
Audio sample type is usually integer or float-point.
Integers will be scaled to [-1, 1] in float32.
"""
float32_samples = samples.astype('float32')
if samples.dtype in np.sctypes['int']:
bits = np.iinfo(samples.dtype).bits
float32_samples *= (1. / 2**(bits - 1))
elif samples.dtype in np.sctypes['float']:
pass
else:
raise TypeError("Unsupported sample type: %s." % samples.dtype)
return float32_samples
def _convert_samples_from_float32(self, samples, dtype):
"""Convert sample type from float32 to dtype.
Audio sample type is usually integer or float-point. For integer
type, float32 will be rescaled from [-1, 1] to the maximum range
supported by the integer type.
This is for writing a audio file.
"""
dtype = np.dtype(dtype)
output_samples = samples.copy()
if dtype in np.sctypes['int']:
bits = np.iinfo(dtype).bits
output_samples *= (2**(bits - 1) / 1.)
min_val = np.iinfo(dtype).min
max_val = np.iinfo(dtype).max
output_samples[output_samples > max_val] = max_val
output_samples[output_samples < min_val] = min_val
elif samples.dtype in np.sctypes['float']:
min_val = np.finfo(dtype).min
max_val = np.finfo(dtype).max
output_samples[output_samples > max_val] = max_val
output_samples[output_samples < min_val] = min_val
else:
raise TypeError("Unsupported sample type: %s." % samples.dtype)
return output_samples.astype(dtype)
"""Contains the data augmentation pipeline."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import random
from data_utils.augmentor.volume_perturb import VolumePerturbAugmentor
class AugmentationPipeline(object):
"""Build a pre-processing pipeline with various augmentation models.Such a
data augmentation pipeline is oftern leveraged to augment the training
samples to make the model invariant to certain types of perturbations in the
real world, improving model's generalization ability.
The pipeline is built according the the augmentation configuration in json
string, e.g.
.. code-block::
'[{"type": "volume",
"params": {"min_gain_dBFS": -15,
"max_gain_dBFS": 15},
"prob": 0.5},
{"type": "speed",
"params": {"min_speed_rate": 0.8,
"max_speed_rate": 1.2},
"prob": 0.5}
]'
This augmentation configuration inserts two augmentation models
into the pipeline, with one is VolumePerturbAugmentor and the other
SpeedPerturbAugmentor. "prob" indicates the probability of the current
augmentor to take effect.
:param augmentation_config: Augmentation configuration in json string.
:type augmentation_config: str
:param random_seed: Random seed.
:type random_seed: int
:raises ValueError: If the augmentation json config is in incorrect format".
"""
def __init__(self, augmentation_config, random_seed=0):
self._rng = random.Random(random_seed)
self._augmentors, self._rates = self._parse_pipeline_from(
augmentation_config)
def transform_audio(self, audio_segment):
"""Run the pre-processing pipeline for data augmentation.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to process.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
for augmentor, rate in zip(self._augmentors, self._rates):
if self._rng.uniform(0., 1.) <= rate:
augmentor.transform_audio(audio_segment)
def _parse_pipeline_from(self, config_json):
"""Parse the config json to build a augmentation pipelien."""
try:
configs = json.loads(config_json)
augmentors = [
self._get_augmentor(config["type"], config["params"])
for config in configs
]
rates = [config["prob"] for config in configs]
except Exception as e:
raise ValueError("Failed to parse the augmentation config json: "
"%s" % str(e))
return augmentors, rates
def _get_augmentor(self, augmentor_type, params):
"""Return an augmentation model by the type name, and pass in params."""
if augmentor_type == "volume":
return VolumePerturbAugmentor(self._rng, **params)
else:
raise ValueError("Unknown augmentor type [%s]." % augmentor_type)
"""Contains the abstract base class for augmentation models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta, abstractmethod
class AugmentorBase(object):
"""Abstract base class for augmentation model (augmentor) class.
All augmentor classes should inherit from this class, and implement the
following abstract methods.
"""
__metaclass__ = ABCMeta
@abstractmethod
def __init__(self):
pass
@abstractmethod
def transform_audio(self, audio_segment):
"""Adds various effects to the input audio segment. Such effects
will augment the training data to make the model invariant to certain
types of perturbations in the real world, improving model's
generalization ability.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to add effects to.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
pass
"""Contains the volume perturb augmentation model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.augmentor.base import AugmentorBase
class VolumePerturbAugmentor(AugmentorBase):
"""Augmentation model for adding random volume perturbation.
This is used for multi-loudness training of PCEN. See
https://arxiv.org/pdf/1607.05666v1.pdf
for more details.
:param rng: Random generator object.
:type rng: random.Random
:param min_gain_dBFS: Minimal gain in dBFS.
:type min_gain_dBFS: float
:param max_gain_dBFS: Maximal gain in dBFS.
:type max_gain_dBFS: float
"""
def __init__(self, rng, min_gain_dBFS, max_gain_dBFS):
self._min_gain_dBFS = min_gain_dBFS
self._max_gain_dBFS = max_gain_dBFS
self._rng = rng
def transform_audio(self, audio_segment):
"""Change audio loadness.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to add effects to.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
gain = self._rng.uniform(min_gain_dBFS, max_gain_dBFS)
audio_segment.apply_gain(gain)
"""Contains data generator for orgnaizing various audio data preprocessing
pipeline and offering data reader interface of PaddlePaddle requirements.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
import paddle.v2 as paddle
from data_utils import utils
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.speech_featurizer import SpeechFeaturizer
from data_utils.speech import SpeechSegment
from data_utils.normalizer import FeatureNormalizer
class DataGenerator(object):
"""
DataGenerator provides basic audio data preprocessing pipeline, and offers
data reader interfaces of PaddlePaddle requirements.
:param vocab_filepath: Vocabulary filepath for indexing tokenized
transcripts.
:type vocab_filepath: basestring
:param mean_std_filepath: File containing the pre-computed mean and stddev.
:type mean_std_filepath: None|basestring
:param augmentation_config: Augmentation configuration in json string.
Details see AugmentationPipeline.__doc__.
:type augmentation_config: str
:param max_duration: Audio with duration (in seconds) greater than
this will be discarded.
:type max_duration: float
:param min_duration: Audio with duration (in seconds) smaller than
this will be discarded.
:type min_duration: float
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param random_seed: Random seed.
:type random_seed: int
"""
def __init__(self,
vocab_filepath,
mean_std_filepath,
augmentation_config='{}',
max_duration=float('inf'),
min_duration=0.0,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
specgram_type='linear',
random_seed=0):
self._max_duration = max_duration
self._min_duration = min_duration
self._normalizer = FeatureNormalizer(mean_std_filepath)
self._augmentation_pipeline = AugmentationPipeline(
augmentation_config=augmentation_config, random_seed=random_seed)
self._speech_featurizer = SpeechFeaturizer(
vocab_filepath=vocab_filepath,
specgram_type=specgram_type,
stride_ms=stride_ms,
window_ms=window_ms,
max_freq=max_freq)
self._rng = random.Random(random_seed)
self._epoch = 0
def batch_reader_creator(self,
manifest_path,
batch_size,
min_batch_size=1,
padding_to=-1,
flatten=False,
sortagrad=False,
batch_shuffle=False):
"""
Batch data reader creator for audio data. Return a callable generator
function to produce batches of data.
Audio features within one batch will be padded with zeros to have the
same shape, or a user-defined shape.
:param manifest_path: Filepath of manifest for audio files.
:type manifest_path: basestring
:param batch_size: Number of instances in a batch.
:type batch_size: int
:param min_batch_size: Any batch with batch size smaller than this will
be discarded. (To be deprecated in the future.)
:type min_batch_size: int
:param padding_to: If set -1, the maximun shape in the batch
will be used as the target shape for padding.
Otherwise, `padding_to` will be the target shape.
:type padding_to: int
:param flatten: If set True, audio features will be flatten to 1darray.
:type flatten: bool
:param sortagrad: If set True, sort the instances by audio duration
in the first epoch for speed up training.
:type sortagrad: bool
:param batch_shuffle: If set True, instances are batch-wise shuffled.
For more details, please see
``_batch_shuffle.__doc__``.
If sortagrad is True, batch_shuffle is disabled
for the first epoch.
:type batch_shuffle: bool
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
def batch_reader():
# read manifest
manifest = utils.read_manifest(
manifest_path=manifest_path,
max_duration=self._max_duration,
min_duration=self._min_duration)
# sort (by duration) or batch-wise shuffle the manifest
if self._epoch == 0 and sortagrad:
manifest.sort(key=lambda x: x["duration"])
elif batch_shuffle:
manifest = self._batch_shuffle(manifest, batch_size)
# prepare batches
instance_reader = self._instance_reader_creator(manifest)
batch = []
for instance in instance_reader():
batch.append(instance)
if len(batch) == batch_size:
yield self._padding_batch(batch, padding_to, flatten)
batch = []
if len(batch) >= min_batch_size:
yield self._padding_batch(batch, padding_to, flatten)
self._epoch += 1
return batch_reader
@property
def feeding(self):
"""Returns data reader's feeding dict.
:return: Data feeding dict.
:rtype: dict
"""
return {"audio_spectrogram": 0, "transcript_text": 1}
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return self._speech_featurizer.vocab_size
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._speech_featurizer.vocab_list
def _process_utterance(self, filename, transcript):
"""Load, augment, featurize and normalize for speech data."""
speech_segment = SpeechSegment.from_file(filename, transcript)
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, text_ids = self._speech_featurizer.featurize(speech_segment)
specgram = self._normalizer.apply(specgram)
return specgram, text_ids
def _instance_reader_creator(self, manifest):
"""
Instance reader creator. Create a callable function to produce
instances of data.
Instance: a tuple of ndarray of audio spectrogram and a list of
token indices for transcript.
"""
def reader():
for instance in manifest:
yield self._process_utterance(instance["audio_filepath"],
instance["text"])
return reader
def _padding_batch(self, batch, padding_to=-1, flatten=False):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = padding_to
# padding
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
new_batch.append((padded_audio, text))
return new_batch
def _batch_shuffle(self, manifest, batch_size):
"""Put similarly-sized instances into minibatches for better efficiency
and make a batch-wise shuffle.
1. Sort the audio clips by duration.
2. Generate a random number `k`, k in [0, batch_size).
3. Randomly shift `k` instances in order to create different batches
for different epochs. Create minibatches.
4. Shuffle the minibatches.
:param manifest: Manifest contents. List of dict.
:type manifest: list
:param batch_size: Batch size. This size is also used for generate
a random number for batch shuffle.
:type batch_size: int
:return: Batch shuffled mainifest.
:rtype: list
"""
manifest.sort(key=lambda x: x["duration"])
shift_len = self._rng.randint(0, batch_size - 1)
batch_manifest = zip(*[iter(manifest[shift_len:])] * batch_size)
self._rng.shuffle(batch_manifest)
batch_manifest = list(sum(batch_manifest, ()))
res_len = len(manifest) - shift_len - len(batch_manifest)
batch_manifest.extend(manifest[-res_len:])
batch_manifest.extend(manifest[0:shift_len])
return batch_manifest
"""Contains the audio featurizer class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from data_utils import utils
from data_utils.audio import AudioSegment
class AudioFeaturizer(object):
"""Audio featurizer, for extracting features from audio contents of
AudioSegment or SpeechSegment.
Currently, it only supports feature type of linear spectrogram.
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
"""
def __init__(self,
specgram_type='linear',
stride_ms=10.0,
window_ms=20.0,
max_freq=None):
self._specgram_type = specgram_type
self._stride_ms = stride_ms
self._window_ms = window_ms
self._max_freq = max_freq
def featurize(self, audio_segment):
"""Extract audio features from AudioSegment or SpeechSegment.
:param audio_segment: Audio/speech segment to extract features from.
:type audio_segment: AudioSegment|SpeechSegment
:return: Spectrogram audio feature in 2darray.
:rtype: ndarray
"""
return self._compute_specgram(audio_segment.samples,
audio_segment.sample_rate)
def _compute_specgram(self, samples, sample_rate):
"""Extract various audio features."""
if self._specgram_type == 'linear':
return self._compute_linear_specgram(
samples, sample_rate, self._stride_ms, self._window_ms,
self._max_freq)
else:
raise ValueError("Unknown specgram_type %s. "
"Supported values: linear." % self._specgram_type)
def _compute_linear_specgram(self,
samples,
sample_rate,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
eps=1e-14):
"""Compute the linear spectrogram from FFT energy."""
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than "
"window size.")
stride_size = int(0.001 * sample_rate * stride_ms)
window_size = int(0.001 * sample_rate * window_ms)
specgram, freqs = self._specgram_real(
samples,
window_size=window_size,
stride_size=stride_size,
sample_rate=sample_rate)
ind = np.where(freqs <= max_freq)[0][-1] + 1
return np.log(specgram[:ind, :] + eps)
def _specgram_real(self, samples, window_size, stride_size, sample_rate):
"""Compute the spectrogram for samples from a real signal."""
# extract strided windows
truncate_size = (len(samples) - window_size) % stride_size
samples = samples[:len(samples) - truncate_size]
nshape = (window_size, (len(samples) - window_size) // stride_size + 1)
nstrides = (samples.strides[0], samples.strides[0] * stride_size)
windows = np.lib.stride_tricks.as_strided(
samples, shape=nshape, strides=nstrides)
assert np.all(
windows[:, 1] == samples[stride_size:(stride_size + window_size)])
# window weighting, squared Fast Fourier Transform (fft), scaling
weighting = np.hanning(window_size)[:, None]
fft = np.fft.rfft(windows * weighting, axis=0)
fft = np.absolute(fft)**2
scale = np.sum(weighting**2) * sample_rate
fft[1:-1, :] *= (2.0 / scale)
fft[(0, -1), :] /= scale
# prepare fft frequency list
freqs = float(sample_rate) / window_size * np.arange(fft.shape[0])
return fft, freqs
"""Contains the speech featurizer class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.featurizer.audio_featurizer import AudioFeaturizer
from data_utils.featurizer.text_featurizer import TextFeaturizer
class SpeechFeaturizer(object):
"""Speech featurizer, for extracting features from both audio and transcript
contents of SpeechSegment.
Currently, for audio parts, it only supports feature type of linear
spectrogram; for transcript parts, it only supports char-level tokenizing
and conversion into a list of token indices. Note that the token indexing
order follows the given vocabulary file.
:param vocab_filepath: Filepath to load vocabulary for token indices
conversion.
:type specgram_type: basestring
:param specgram_type: Specgram feature type. Options: 'linear'.
:type specgram_type: str
:param stride_ms: Striding size (in milliseconds) for generating frames.
:type stride_ms: float
:param window_ms: Window size (in milliseconds) for generating frames.
:type window_ms: float
:param max_freq: Used when specgram_type is 'linear', only FFT bins
corresponding to frequencies between [0, max_freq] are
returned.
:types max_freq: None|float
"""
def __init__(self,
vocab_filepath,
specgram_type='linear',
stride_ms=10.0,
window_ms=20.0,
max_freq=None):
self._audio_featurizer = AudioFeaturizer(specgram_type, stride_ms,
window_ms, max_freq)
self._text_featurizer = TextFeaturizer(vocab_filepath)
def featurize(self, speech_segment):
"""Extract features for speech segment.
1. For audio parts, extract the audio features.
2. For transcript parts, convert text string to a list of token indices
in char-level.
:param audio_segment: Speech segment to extract features from.
:type audio_segment: SpeechSegment
:return: A tuple of 1) spectrogram audio feature in 2darray, 2) list of
char-level token indices.
:rtype: tuple
"""
audio_feature = self._audio_featurizer.featurize(speech_segment)
text_ids = self._text_featurizer.featurize(speech_segment.transcript)
return audio_feature, text_ids
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return self._text_featurizer.vocab_size
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._text_featurizer.vocab_list
"""Contains the text featurizer class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
class TextFeaturizer(object):
"""Text featurizer, for processing or extracting features from text.
Currently, it only supports char-level tokenizing and conversion into
a list of token indices. Note that the token indexing order follows the
given vocabulary file.
:param vocab_filepath: Filepath to load vocabulary for token indices
conversion.
:type specgram_type: basestring
"""
def __init__(self, vocab_filepath):
self._vocab_dict, self._vocab_list = self._load_vocabulary_from_file(
vocab_filepath)
def featurize(self, text):
"""Convert text string to a list of token indices in char-level.Note
that the token indexing order follows the given vocabulary file.
:param text: Text to process.
:type text: basestring
:return: List of char-level token indices.
:rtype: list
"""
tokens = self._char_tokenize(text)
return [self._vocab_dict[token] for token in tokens]
@property
def vocab_size(self):
"""Return the vocabulary size.
:return: Vocabulary size.
:rtype: int
"""
return len(self._vocab_list)
@property
def vocab_list(self):
"""Return the vocabulary in list.
:return: Vocabulary in list.
:rtype: list
"""
return self._vocab_list
def _char_tokenize(self, text):
"""Character tokenizer."""
return list(text.strip())
def _load_vocabulary_from_file(self, vocab_filepath):
"""Load vocabulary from file."""
vocab_lines = []
with open(vocab_filepath, 'r') as file:
vocab_lines.extend(file.readlines())
vocab_list = [line[:-1] for line in vocab_lines]
vocab_dict = dict(
[(token, id) for (id, token) in enumerate(vocab_list)])
return vocab_dict, vocab_list
"""Contains feature normalizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import random
import data_utils.utils as utils
from data_utils.audio import AudioSegment
class FeatureNormalizer(object):
"""Feature normalizer. Normalize features to be of zero mean and unit
stddev.
if mean_std_filepath is provided (not None), the normalizer will directly
initilize from the file. Otherwise, both manifest_path and featurize_func
should be given for on-the-fly mean and stddev computing.
:param mean_std_filepath: File containing the pre-computed mean and stddev.
:type mean_std_filepath: None|basestring
:param manifest_path: Manifest of instances for computing mean and stddev.
:type meanifest_path: None|basestring
:param featurize_func: Function to extract features. It should be callable
with ``featurize_func(audio_segment)``.
:type featurize_func: None|callable
:param num_samples: Number of random samples for computing mean and stddev.
:type num_samples: int
:param random_seed: Random seed for sampling instances.
:type random_seed: int
:raises ValueError: If both mean_std_filepath and manifest_path
(or both mean_std_filepath and featurize_func) are None.
"""
def __init__(self,
mean_std_filepath,
manifest_path=None,
featurize_func=None,
num_samples=500,
random_seed=0):
if not mean_std_filepath:
if not (manifest_path and featurize_func):
raise ValueError("If mean_std_filepath is None, meanifest_path "
"and featurize_func should not be None.")
self._rng = random.Random(random_seed)
self._compute_mean_std(manifest_path, featurize_func, num_samples)
else:
self._read_mean_std_from_file(mean_std_filepath)
def apply(self, features, eps=1e-14):
"""Normalize features to be of zero mean and unit stddev.
:param features: Input features to be normalized.
:type features: ndarray
:param eps: added to stddev to provide numerical stablibity.
:type eps: float
:return: Normalized features.
:rtype: ndarray
"""
return (features - self._mean) / (self._std + eps)
def write_to_file(self, filepath):
"""Write the mean and stddev to the file.
:param filepath: File to write mean and stddev.
:type filepath: basestring
"""
np.savez(filepath, mean=self._mean, std=self._std)
def _read_mean_std_from_file(self, filepath):
"""Load mean and std from file."""
npzfile = np.load(filepath)
self._mean = npzfile["mean"]
self._std = npzfile["std"]
def _compute_mean_std(self, manifest_path, featurize_func, num_samples):
"""Compute mean and std from randomly sampled instances."""
manifest = utils.read_manifest(manifest_path)
sampled_manifest = self._rng.sample(manifest, num_samples)
features = []
for instance in sampled_manifest:
features.append(
featurize_func(
AudioSegment.from_file(instance["audio_filepath"])))
features = np.hstack(features)
self._mean = np.mean(features, axis=1).reshape([-1, 1])
self._std = np.std(features, axis=1).reshape([-1, 1])
"""Contains the speech segment class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.audio import AudioSegment
class SpeechSegment(AudioSegment):
"""Speech segment abstraction, a subclass of AudioSegment,
with an additional transcript.
:param samples: Audio samples [num_samples x num_channels].
:type samples: ndarray.float32
:param sample_rate: Audio sample rate.
:type sample_rate: int
:param transcript: Transcript text for the speech.
:type transript: basestring
:raises TypeError: If the sample data type is not float or int.
"""
def __init__(self, samples, sample_rate, transcript):
AudioSegment.__init__(self, samples, sample_rate)
self._transcript = transcript
def __eq__(self, other):
"""Return whether two objects are equal.
"""
if not AudioSegment.__eq__(self, other):
return False
if self._transcript != other._transcript:
return False
return True
def __ne__(self, other):
"""Return whether two objects are unequal."""
return not self.__eq__(other)
@classmethod
def from_file(cls, filepath, transcript):
"""Create speech segment from audio file and corresponding transcript.
:param filepath: Filepath or file object to audio file.
:type filepath: basestring|file
:param transcript: Transcript text for the speech.
:type transript: basestring
:return: Audio segment instance.
:rtype: AudioSegment
"""
audio = AudioSegment.from_file(filepath)
return cls(audio.samples, audio.sample_rate, transcript)
@classmethod
def from_bytes(cls, bytes, transcript):
"""Create speech segment from a byte string and corresponding
transcript.
:param bytes: Byte string containing audio samples.
:type bytes: str
:param transcript: Transcript text for the speech.
:type transript: basestring
:return: Audio segment instance.
:rtype: AudioSegment
"""
audio = AudioSegment.from_bytes(bytes)
return cls(audio.samples, audio.sample_rate, transcript)
@property
def transcript(self):
"""Return the transcript text.
:return: Transcript text for the speech.
:rtype: basestring
"""
return self._transcript
"""Contains data helper functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
def read_manifest(manifest_path, max_duration=float('inf'), min_duration=0.0):
"""Load and parse manifest file.
Instances with durations outside [min_duration, max_duration] will be
filtered out.
:param manifest_path: Manifest file to load and parse.
:type manifest_path: basestring
:param max_duration: Maximal duration in seconds for instance filter.
:type max_duration: float
:param min_duration: Minimal duration in seconds for instance filter.
:type min_duration: float
:return: Manifest parsing results. List of dict.
:rtype: list
:raises IOError: If failed to parse the manifest.
"""
manifest = []
for json_line in open(manifest_path):
try:
json_data = json.loads(json_line)
except Exception as e:
raise IOError("Error reading manifest: %s" % str(e))
if (json_data["duration"] <= max_duration and
json_data["duration"] >= min_duration):
manifest.append(json_data)
return manifest
"""Prepare Librispeech ASR datasets.
Download, unpack and create manifest files.
Manifest file is a json-format file with each line containing the
meta data (i.e. audio filepath, transcript and audio duration)
of each audio file in the data set.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import distutils.util
import os
import wget
import tarfile
import argparse
import soundfile
import json
from paddle.v2.dataset.common import md5file
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
URL_ROOT = "http://www.openslr.org/resources/12"
URL_TEST_CLEAN = URL_ROOT + "/test-clean.tar.gz"
URL_TEST_OTHER = URL_ROOT + "/test-other.tar.gz"
URL_DEV_CLEAN = URL_ROOT + "/dev-clean.tar.gz"
URL_DEV_OTHER = URL_ROOT + "/dev-other.tar.gz"
URL_TRAIN_CLEAN_100 = URL_ROOT + "/train-clean-100.tar.gz"
URL_TRAIN_CLEAN_360 = URL_ROOT + "/train-clean-360.tar.gz"
URL_TRAIN_OTHER_500 = URL_ROOT + "/train-other-500.tar.gz"
MD5_TEST_CLEAN = "32fa31d27d2e1cad72775fee3f4849a9"
MD5_TEST_OTHER = "fb5a50374b501bb3bac4815ee91d3135"
MD5_DEV_CLEAN = "42e2234ba48799c1f50f24a7926300a1"
MD5_DEV_OTHER = "c8d0bcc9cca99d4f8b62fcc847357931"
MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522"
MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa"
MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708"
parser = argparse.ArgumentParser(
description='Downloads and prepare LibriSpeech dataset.')
parser.add_argument(
"--target_dir",
default=DATA_HOME + "/Libri",
type=str,
help="Directory to save the dataset. (default: %(default)s)")
parser.add_argument(
"--manifest_prefix",
default="manifest",
type=str,
help="Filepath prefix for output manifests. (default: %(default)s)")
parser.add_argument(
"--full_download",
default="True",
type=distutils.util.strtobool,
help="Download all datasets for Librispeech."
" If False, only download a minimal requirement (test-clean, dev-clean"
" train-clean-100). (default: %(default)s)")
args = parser.parse_args()
def download(url, md5sum, target_dir):
"""
Download file from url to target_dir, and check md5sum.
"""
if not os.path.exists(target_dir): os.makedirs(target_dir)
filepath = os.path.join(target_dir, url.split("/")[-1])
if not (os.path.exists(filepath) and md5file(filepath) == md5sum):
print("Downloading %s ..." % url)
wget.download(url, target_dir)
print("\nMD5 Chesksum %s ..." % filepath)
if not md5file(filepath) == md5sum:
raise RuntimeError("MD5 checksum failed.")
else:
print("File exists, skip downloading. (%s)" % filepath)
return filepath
def unpack(filepath, target_dir):
"""
Unpack the file to the target_dir.
"""
print("Unpacking %s ..." % filepath)
tar = tarfile.open(filepath)
tar.extractall(target_dir)
tar.close()
def create_manifest(data_dir, manifest_path):
"""
Create a manifest json file summarizing the data set, with each line
containing the meta data (i.e. audio filepath, transcription text, audio
duration) of each audio file within the data set.
"""
print("Creating manifest %s ..." % manifest_path)
json_lines = []
for subfolder, _, filelist in sorted(os.walk(data_dir)):
text_filelist = [
filename for filename in filelist if filename.endswith('trans.txt')
]
if len(text_filelist) > 0:
text_filepath = os.path.join(data_dir, subfolder, text_filelist[0])
for line in open(text_filepath):
segments = line.strip().split()
text = ' '.join(segments[1:]).lower()
audio_filepath = os.path.join(data_dir, subfolder,
segments[0] + '.flac')
audio_data, samplerate = soundfile.read(audio_filepath)
duration = float(len(audio_data)) / samplerate
json_lines.append(
json.dumps({
'audio_filepath': audio_filepath,
'duration': duration,
'text': text
}))
with open(manifest_path, 'w') as out_file:
for line in json_lines:
out_file.write(line + '\n')
def prepare_dataset(url, md5sum, target_dir, manifest_path):
"""
Download, unpack and create summmary manifest file.
"""
if not os.path.exists(os.path.join(target_dir, "LibriSpeech")):
# download
filepath = download(url, md5sum, target_dir)
# unpack
unpack(filepath, target_dir)
else:
print("Skip downloading and unpacking. Data already exists in %s." %
target_dir)
# create manifest json file
create_manifest(target_dir, manifest_path)
def main():
prepare_dataset(
url=URL_TEST_CLEAN,
md5sum=MD5_TEST_CLEAN,
target_dir=os.path.join(args.target_dir, "test-clean"),
manifest_path=args.manifest_prefix + ".test-clean")
prepare_dataset(
url=URL_DEV_CLEAN,
md5sum=MD5_DEV_CLEAN,
target_dir=os.path.join(args.target_dir, "dev-clean"),
manifest_path=args.manifest_prefix + ".dev-clean")
prepare_dataset(
url=URL_TRAIN_CLEAN_100,
md5sum=MD5_TRAIN_CLEAN_100,
target_dir=os.path.join(args.target_dir, "train-clean-100"),
manifest_path=args.manifest_prefix + ".train-clean-100")
if args.full_download:
prepare_dataset(
url=URL_TEST_OTHER,
md5sum=MD5_TEST_OTHER,
target_dir=os.path.join(args.target_dir, "test-other"),
manifest_path=args.manifest_prefix + ".test-other")
prepare_dataset(
url=URL_DEV_OTHER,
md5sum=MD5_DEV_OTHER,
target_dir=os.path.join(args.target_dir, "dev-other"),
manifest_path=args.manifest_prefix + ".dev-other")
prepare_dataset(
url=URL_TRAIN_CLEAN_360,
md5sum=MD5_TRAIN_CLEAN_360,
target_dir=os.path.join(args.target_dir, "train-clean-360"),
manifest_path=args.manifest_prefix + ".train-clean-360")
prepare_dataset(
url=URL_TRAIN_OTHER_500,
md5sum=MD5_TRAIN_OTHER_500,
target_dir=os.path.join(args.target_dir, "train-other-500"),
manifest_path=args.manifest_prefix + ".train-other-500")
if __name__ == '__main__':
main()
cd librispeech
python librispeech.py
if [ $? -ne 0 ]; then
echo "Prepare LibriSpeech failed. Terminated."
exit 1
fi
cd -
cat librispeech/manifest.train* | shuf > manifest.train
cat librispeech/manifest.dev-clean > manifest.dev
cat librispeech/manifest.test-clean > manifest.test
echo "All done."
'
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
"""Contains various CTC decoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from itertools import groupby
def ctc_best_path_decode(probs_seq, vocabulary):
"""
Best path decoding, also called argmax decoding or greedy decoding.
Path consisting of the most probable tokens are further post-processed to
remove consecutive repetitions and all blanks.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
character. Each element is a list of float probabilities
for one character.
:type probs_seq: list
:param vocabulary: Vocabulary list.
:type vocabulary: list
:return: Decoding result string.
:rtype: baseline
"""
# dimension verification
for probs in probs_seq:
if not len(probs) == len(vocabulary) + 1:
raise ValueError("probs_seq dimension mismatchedd with vocabulary")
# argmax to get the best index for each time step
max_index_list = list(np.array(probs_seq).argmax(axis=1))
# remove consecutive duplicate indexes
index_list = [index_group[0] for index_group in groupby(max_index_list)]
# remove blank indexes
blank_index = len(vocabulary)
index_list = [index for index in index_list if index != blank_index]
# convert index list to string
return ''.join([vocabulary[index] for index in index_list])
def ctc_decode(probs_seq, vocabulary, method):
"""
CTC-like sequence decoding from a sequence of likelihood probablilites.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
character. Each element is a list of float probabilities
for one character.
:type probs_seq: list
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param method: Decoding method name, with options: "best_path".
:type method: basestring
:return: Decoding result string.
:rtype: baseline
"""
for prob_list in probs_seq:
if not len(prob_list) == len(vocabulary) + 1:
raise ValueError("probs dimension mismatchedd with vocabulary")
if method == "best_path":
return ctc_best_path_decode(probs_seq, vocabulary)
else:
raise ValueError("Decoding method [%s] is not supported.")
"""Inferer for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import gzip
import distutils.util
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
from decoder import ctc_decode
parser = argparse.ArgumentParser(
description='Simplified version of DeepSpeech2 inference.')
parser.add_argument(
"--num_samples",
default=10,
type=int,
help="Number of samples for inference. (default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
type=int,
help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
"--num_rnn_layers",
default=3,
type=int,
help="RNN layer number. (default: %(default)s)")
parser.add_argument(
"--rnn_layer_size",
default=512,
type=int,
help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
"--use_gpu",
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--decode_manifest_path",
default='datasets/manifest.test',
type=str,
help="Manifest path for decoding. (default: %(default)s)")
parser.add_argument(
"--model_filepath",
default='./params.tar.gz',
type=str,
help="Model filepath. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
args = parser.parse_args()
def infer():
"""
Max-ctc-decoding for DeepSpeech2.
"""
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}')
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
is_inference=True)
# load parameters
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.model_filepath))
# prepare infer data
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
batch_size=args.num_samples,
sortagrad=False,
batch_shuffle=False)
infer_data = batch_reader().next()
# run inference
infer_results = paddle.infer(
output_layer=output_probs, parameters=parameters, input=infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(len(infer_data))
]
# decode and print
for i, probs in enumerate(probs_split):
output_transcription = ctc_decode(
probs_seq=probs,
vocabulary=data_generator.vocab_list,
method="best_path")
target_transcription = ''.join(
[data_generator.vocab_list[index] for index in infer_data[i][1]])
print("Target Transcription: %s \nOutput Transcription: %s \n" %
(target_transcription, output_transcription))
def main():
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
infer()
if __name__ == '__main__':
main()
"""Contains DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
padding, act):
"""
Convolution layer with batch normalization.
"""
conv_layer = paddle.layer.img_conv(
input=input,
filter_size=filter_size,
num_channels=num_channels_in,
num_filters=num_channels_out,
stride=stride,
padding=padding,
act=paddle.activation.Linear(),
bias_attr=False)
return paddle.layer.batch_norm(input=conv_layer, act=act)
def bidirectional_simple_rnn_bn_layer(name, input, size, act):
"""
Bidirectonal simple rnn layer with sequence-wise batch normalization.
The batch normalization is only performed on input-state weights.
"""
# input-hidden weights shared across bi-direcitonal rnn.
input_proj = paddle.layer.fc(
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
# batch norm is only performed on input-state projection
input_proj_bn = paddle.layer.batch_norm(
input=input_proj, act=paddle.activation.Linear())
# forward and backward in time
forward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=False)
backward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=True)
return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn])
def conv_group(input, num_stacks):
"""
Convolution group with several stacking convolution layers.
"""
conv = conv_bn_layer(
input=input,
filter_size=(11, 41),
num_channels_in=1,
num_channels_out=32,
stride=(3, 2),
padding=(5, 20),
act=paddle.activation.BRelu())
for i in xrange(num_stacks - 1):
conv = conv_bn_layer(
input=conv,
filter_size=(11, 21),
num_channels_in=32,
num_channels_out=32,
stride=(1, 2),
padding=(5, 10),
act=paddle.activation.BRelu())
output_num_channels = 32
output_height = 160 // pow(2, num_stacks) + 1
return conv, output_num_channels, output_height
def rnn_group(input, size, num_stacks):
"""
RNN group with several stacking RNN layers.
"""
output = input
for i in xrange(num_stacks):
output = bidirectional_simple_rnn_bn_layer(
name=str(i), input=output, size=size, act=paddle.activation.BRelu())
return output
def deep_speech2(audio_data,
text_data,
dict_size,
num_conv_layers=2,
num_rnn_layers=3,
rnn_size=256,
is_inference=False):
"""
The whole DeepSpeech2 model structure (a simplified version).
:param audio_data: Audio spectrogram data layer.
:type audio_data: LayerOutput
:param text_data: Transcription text data layer.
:type text_data: LayerOutput
:param dict_size: Dictionary size for tokenized transcription.
:type dict_size: int
:param num_conv_layers: Number of stacking convolution layers.
:type num_conv_layers: int
:param num_rnn_layers: Number of stacking RNN layers.
:type num_rnn_layers: int
:param rnn_size: RNN layer size (number of RNN cells).
:type rnn_size: int
:param is_inference: False in the training mode, and True in the
inferene mode.
:type is_inference: bool
:return: If is_inference set False, return a ctc cost layer;
if is_inference set True, return a sequence layer of output
probability distribution.
:rtype: tuple of LayerOutput
"""
# convolution group
conv_group_output, conv_group_num_channels, conv_group_height = conv_group(
input=audio_data, num_stacks=num_conv_layers)
# convert data form convolution feature map to sequence of vectors
conv2seq = paddle.layer.block_expand(
input=conv_group_output,
num_channels=conv_group_num_channels,
stride_x=1,
stride_y=1,
block_x=1,
block_y=conv_group_height)
# rnn group
rnn_group_output = rnn_group(
input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers)
fc = paddle.layer.fc(
input=rnn_group_output,
size=dict_size + 1,
act=paddle.activation.Linear(),
bias_attr=True)
if is_inference:
# probability distribution with softmax
return paddle.layer.mixed(
input=paddle.layer.identity_projection(input=fc),
act=paddle.activation.Softmax())
else:
# ctc cost
return paddle.layer.warp_ctc(
input=fc,
label=text_data,
size=dict_size + 1,
blank=dict_size,
norm_by_times=True)
SoundFile==0.9.0.post1
wget==3.2
"""Trainer for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import argparse
import gzip
import time
import distutils.util
import paddle.v2 as paddle
from model import deep_speech2
from data_utils.data import DataGenerator
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--batch_size", default=32, type=int, help="Minibatch size.")
parser.add_argument(
"--num_passes",
default=20,
type=int,
help="Training pass number. (default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
type=int,
help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
"--num_rnn_layers",
default=3,
type=int,
help="RNN layer number. (default: %(default)s)")
parser.add_argument(
"--rnn_layer_size",
default=512,
type=int,
help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
"--adam_learning_rate",
default=5e-4,
type=float,
help="Learning rate for ADAM Optimizer. (default: %(default)s)")
parser.add_argument(
"--use_gpu",
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--use_sortagrad",
default=True,
type=distutils.util.strtobool,
help="Use sortagrad or not. (default: %(default)s)")
parser.add_argument(
"--trainer_count",
default=4,
type=int,
help="Trainer number. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--train_manifest_path",
default='datasets/manifest.train',
type=str,
help="Manifest path for training. (default: %(default)s)")
parser.add_argument(
"--dev_manifest_path",
default='datasets/manifest.dev',
type=str,
help="Manifest path for validation. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
"--init_model_path",
default=None,
type=str,
help="If set None, the training will start from scratch. "
"Otherwise, the training will resume from "
"the existing model of this path. (default: %(default)s)")
parser.add_argument(
"--augmentation_config",
default='{}',
type=str,
help="Augmentation configuration in json-format. "
"(default: %(default)s)")
args = parser.parse_args()
def train():
"""
DeepSpeech2 training.
"""
# initialize data generator
def data_generator():
return DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config=args.augmentation_config)
train_generator = data_generator()
test_generator = data_generator()
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(
train_generator.vocab_size))
cost = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=train_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
is_inference=False)
# create/load parameters and optimizer
if args.init_model_path is None:
parameters = paddle.parameters.create(cost)
else:
if not os.path.isfile(args.init_model_path):
raise IOError("Invalid model!")
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.init_model_path))
optimizer = paddle.optimizer.Adam(
learning_rate=args.adam_learning_rate, gradient_clipping_threshold=400)
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=optimizer)
# prepare data reader
train_batch_reader = train_generator.batch_reader_creator(
manifest_path=args.train_manifest_path,
batch_size=args.batch_size,
sortagrad=args.use_sortagrad if args.init_model_path is None else False,
batch_shuffle=True)
test_batch_reader = test_generator.batch_reader_creator(
manifest_path=args.dev_manifest_path,
batch_size=args.batch_size,
sortagrad=False,
batch_shuffle=False)
# create event handler
def event_handler(event):
global start_time, cost_sum, cost_counter
if isinstance(event, paddle.event.EndIteration):
cost_sum += event.cost
cost_counter += 1
if event.batch_id % 50 == 0:
print("\nPass: %d, Batch: %d, TrainCost: %f" %
(event.pass_id, event.batch_id, cost_sum / cost_counter))
cost_sum, cost_counter = 0.0, 0
with gzip.open("params_tmp.tar.gz", 'w') as f:
parameters.to_tar(f)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.BeginPass):
start_time = time.time()
cost_sum, cost_counter = 0.0, 0
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=test_batch_reader, feeding=test_generator.feeding)
print("\n------- Time: %d sec, Pass: %d, ValidationCost: %s" %
(time.time() - start_time, event.pass_id, result.cost))
# run train
trainer.train(
reader=train_batch_reader,
event_handler=event_handler,
num_passes=args.num_passes,
feeding=train_generator.feeding)
def main():
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
train()
if __name__ == '__main__':
main()
## 使用说明
`caffe2paddle.py`提供了将Caffe训练的模型转换为PaddlePaddle可使用的模型的接口`ModelConverter`,其封装了图像领域常用的Convolution、BatchNorm等layer的转换函数,可以完成VGG、ResNet等常用模型的转换。模型转换的基本过程是:基于Caffe的Python API加载模型并依次获取每一个layer的信息,将其中的参数根据layer类型与PaddlePaddle适配后序列化保存(对于Pooling等无需训练的layer不做处理),输出可以直接为PaddlePaddle的Python API加载使用的模型文件。
可以按如下方法使用`ModelConverter`接口:
```python
# 定义以下变量为相应的文件路径和文件名
caffe_model_file = "./ResNet-50-deploy.prototxt" # Caffe网络配置文件的路径
caffe_pretrained_file = "./ResNet-50-model.caffemodel" # Caffe模型文件的路径
paddle_tar_name = "Paddle_ResNet50.tar.gz" # 输出的Paddle模型的文件名
# 初始化,从指定文件加载模型
converter = ModelConverter(caffe_model_file=caffe_model_file,
caffe_pretrained_file=caffe_pretrained_file,
paddle_tar_name=paddle_tar_name)
# 进行模型转换
converter.convert()
```
`caffe2paddle.py`中已提供以上步骤,修改其中文件相关变量的值后执行`python caffe2paddle.py`即可完成模型转换。此外,为辅助验证转换结果,`ModelConverter`中封装了使用Caffe API预测的接口`caffe_predict`,使用如下所示,将会打印按类别概率排序的(类别id, 概率)的列表:
```python
# img为图片路径,mean_file为图像均值文件的路径
converter.caffe_predict(img="./cat.jpg", mean_file="./imagenet/ilsvrc_2012_mean.npy")
```
需要注意,在模型转换时会对layer的参数进行命名,这里默认使用PaddlePaddle中默认的layer和参数命名规则:以`wrap_name_default`中的值和该layer类型的调用计数构造layer name,并以此为前缀构造参数名,比如第一个InnerProduct层(相应转换函数说明见下方)的bias参数将被命名为`___fc_layer_0__.wbias`
```python
# 对InnerProduct层的参数进行转换,使用name值构造对应layer的参数名
# wrap_name_default设置默认name值为fc_layer
@wrap_name_default("fc_layer")
def convert_InnerProduct_layer(self, params, name=None)
```
为此,在验证和使用转换得到的模型时,编写PaddlePaddle网络配置无需指定layer name并且要保证和Caffe端模型使用同样的拓扑顺序,尤其是对于ResNet这种有分支的网络结构,要保证两分支在PaddlePaddle和Caffe中先后顺序一致,这样才能够使得模型参数正确加载。
如果不希望使用默认的命名,并且在PaddlePaddle网络配置中指定了layer name,可以建立Caffe和PaddlePaddle网络配置间layer name对应关系的`dict`并在调用`ModelConverter.convert`时作为`name_map`的值传入,这样在命名保存layer中的参数时将使用相应的layer name,不受拓扑顺序的影响。另外这里只针对Caffe网络配置中Convolution、InnerProduct和BatchNorm类别的layer建立`name_map`即可(一方面,对于Pooling等无需训练的layer不需要保存,故这里没有提供转换接口;另一方面,对于Caffe中的Scale类别的layer,由于Caffe和PaddlePaddle在实现上的一些差别,PaddlePaddle中的batch_norm层是BatchNorm和Scale层的复合,故这里对Scale进行了特殊处理)。
import os
import struct
import gzip
import tarfile
import cStringIO
import numpy as np
import cv2
import caffe
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
class ModelConverter(object):
def __init__(self, caffe_model_file, caffe_pretrained_file,
paddle_tar_name):
self.net = caffe.Net(caffe_model_file, caffe_pretrained_file,
caffe.TEST)
self.tar_name = paddle_tar_name
self.params = dict()
self.pre_layer_name = ""
self.pre_layer_type = ""
def convert(self, name_map=None):
layer_dict = self.net.layer_dict
for layer_name in layer_dict.keys():
layer = layer_dict[layer_name]
layer_params = layer.blobs
layer_type = layer.type
if len(layer_params) > 0:
self.pre_layer_name = getattr(
self, "convert_" + layer_type + "_layer")(
layer_params,
name=None
if name_map == None else name_map.get(layer_name))
self.pre_layer_type = layer_type
with gzip.open(self.tar_name, 'w') as f:
self.to_tar(f)
return
def to_tar(self, f):
tar = tarfile.TarFile(fileobj=f, mode='w')
for param_name in self.params.keys():
param_conf, param_data = self.params[param_name]
confStr = param_conf.SerializeToString()
tarinfo = tarfile.TarInfo(name="%s.protobuf" % param_name)
tarinfo.size = len(confStr)
buf = cStringIO.StringIO(confStr)
buf.seek(0)
tar.addfile(tarinfo, fileobj=buf)
buf = cStringIO.StringIO()
self.serialize(param_data, buf)
tarinfo = tarfile.TarInfo(name=param_name)
buf.seek(0)
tarinfo.size = len(buf.getvalue())
tar.addfile(tarinfo, buf)
@staticmethod
def serialize(data, f):
f.write(struct.pack("IIQ", 0, 4, data.size))
f.write(data.tobytes())
@wrap_name_default("conv")
def convert_Convolution_layer(self, params, name=None):
for i in range(len(params)):
data = np.array(params[i].data)
if len(params) == 2:
suffix = "0" if i == 0 else "bias"
file_name = "_%s.w%s" % (name, suffix)
else:
file_name = "_%s.w%s" % (name, str(i))
param_conf = ParameterConfig()
param_conf.name = file_name
param_conf.size = reduce(lambda a, b: a * b, data.shape)
self.params[file_name] = (param_conf, data.flatten())
return name
@wrap_name_default("fc_layer")
def convert_InnerProduct_layer(self, params, name=None):
for i in range(len(params)):
data = np.array(params[i].data)
if len(params) == 2:
suffix = "0" if i == 0 else "bias"
file_name = "_%s.w%s" % (name, suffix)
else:
file_name = "_%s.w%s" % (name, str(i))
data = np.transpose(data)
param_conf = ParameterConfig()
param_conf.name = file_name
dims = list(data.shape)
if len(dims) < 2:
dims.insert(0, 1)
param_conf.size = reduce(lambda a, b: a * b, dims)
param_conf.dims.extend(dims)
self.params[file_name] = (param_conf, data.flatten())
return name
@wrap_name_default("batch_norm")
def convert_BatchNorm_layer(self, params, name=None):
scale = 1 / np.array(params[-1].data)[0] if np.array(
params[-1].data)[0] != 0 else 0
for i in range(2):
data = np.array(params[i].data) * scale
file_name = "_%s.w%s" % (name, str(i + 1))
param_conf = ParameterConfig()
param_conf.name = file_name
dims = list(data.shape)
assert len(dims) == 1
dims.insert(0, 1)
param_conf.size = reduce(lambda a, b: a * b, dims)
param_conf.dims.extend(dims)
self.params[file_name] = (param_conf, data.flatten())
return name
def convert_Scale_layer(self, params, name=None):
assert self.pre_layer_type == "BatchNorm"
name = self.pre_layer_name
for i in range(len(params)):
data = np.array(params[i].data)
suffix = "0" if i == 0 else "bias"
file_name = "_%s.w%s" % (name, suffix)
param_conf = ParameterConfig()
param_conf.name = file_name
dims = list(data.shape)
assert len(dims) == 1
dims.insert(0, 1)
param_conf.size = reduce(lambda a, b: a * b, dims)
if i == 1:
param_conf.dims.extend(dims)
self.params[file_name] = (param_conf, data.flatten())
return name
def caffe_predict(self,
img,
mean_file='./caffe/imagenet/ilsvrc_2012_mean.npy'):
net = self.net
net.blobs['data'].data[...] = load_image(img, mean_file=mean_file)
out = net.forward()
output_prob = net.blobs['prob'].data[0].flatten()
print zip(np.argsort(output_prob)[::-1], np.sort(output_prob)[::-1])
def load_image(file, resize_size=256, crop_size=224, mean_file=None):
# load image
im = cv2.imread(file)
# resize
h, w = im.shape[:2]
h_new, w_new = resize_size, resize_size
if h > w:
h_new = resize_size * h / w
else:
w_new = resize_size * w / h
im = cv2.resize(im, (h_new, w_new), interpolation=cv2.INTER_CUBIC)
# crop
h, w = im.shape[:2]
h_start = (h - crop_size) / 2
w_start = (w - crop_size) / 2
h_end, w_end = h_start + crop_size, w_start + crop_size
im = im[h_start:h_end, w_start:w_end, :]
# transpose to CHW order
im = im.transpose((2, 0, 1))
if mean_file:
mu = np.load(mean_file)
mu = mu.mean(1).mean(1)
im = im - mu[:, None, None]
im = im / 255.0
return im
if __name__ == "__main__":
caffe_model_file = "./ResNet-50-deploy.prototxt"
caffe_pretrained_file = "./ResNet-50-model.caffemodel"
paddle_tar_name = "Paddle_ResNet50.tar.gz"
converter = ModelConverter(
caffe_model_file=caffe_model_file,
caffe_pretrained_file=caffe_pretrained_file,
paddle_tar_name=paddle_tar_name)
converter.convert()
converter.caffe_predict("./cat.jpg",
"./caffe/imagenet/ilsvrc_2012_mean.npy")
...@@ -106,4 +106,4 @@ def main(): ...@@ -106,4 +106,4 @@ def main():
if __name__ == '__main__': if __name__ == '__main__':
main() main()
\ No newline at end of file
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2 as paddle import paddle.v2 as paddle
__all__ = ['vgg13', 'vgg16', 'vgg19'] __all__ = ['vgg13', 'vgg16', 'vgg19']
......
TBD # 语言模型
## 简介
语言模型即 Language Model,简称LM。它是一个概率分布模型,简单来说,就是用来计算一个句子的概率的模型。利用它可以确定哪个词序列的可能性更大,或者给定若干个词,可以预测下一个最可能出现的词。语言模型是自然语言处理领域里一个重要的基础模型。
## 应用场景
**语言模型被应用在很多领域**,如:
* **自动写作**:语言模型可以根据上文生成下一个词,递归下去可以生成整个句子、段落、篇章。
* **QA**:语言模型可以根据Question生成Answer。
* **机器翻译**:当前主流的机器翻译模型大多基于Encoder-Decoder模式,其中Decoder就是一个语言模型,用来生成目标语言。
* **拼写检查**:语言模型可以计算出词序列的概率,一般在拼写错误处序列的概率会骤减,可以用来识别拼写错误并提供改正候选集。
* **词性标注、句法分析、语音识别......**
## 关于本例
Language Model 常见的实现方式有 N-Gram、RNN、seq2seq。本例中实现了基于N-Gram、RNN的语言模型。**本例的文件结构如下**`images` 文件夹与使用无关可不关心):
```text
.
├── data # toy、demo数据,用户可据此格式化自己的数据
│ ├── chinese.test.txt # test用的数据demo
| ├── chinese.train.txt # train用的数据demo
│ └── input.txt # infer用的输入数据demo
├── config.py # 配置文件,包括data、train、infer相关配置
├── infer.py # 预测任务脚本,即生成文本
├── network_conf.py # 本例中涉及的各种网络结构均定义在此文件中,希望进一步修改模型结构,请修改此文件
├── reader.py # 读取数据接口
├── README.md # 文档
├── train.py # 训练任务脚本
└── utils.py # 定义通用的函数,例如:构建字典、加载字典等
```
**注:一般情况下基于N-Gram的语言模型不如基于RNN的语言模型效果好,所以实际使用时建议使用基于RNN的语言模型,本例中也将着重介绍基于RNN的模型,简略介绍基于N-Gram的模型。**
## RNN 语言模型
### 简介
RNN是一个序列模型,基本思路是:在时刻t,将前一时刻t-1的隐藏层输出和t时刻的词向量一起输入到隐藏层从而得到时刻t的特征表示,然后用这个特征表示得到t时刻的预测输出,如此在时间维上递归下去。可以看出RNN善于使用上文信息、历史知识,具有“记忆”功能。理论上RNN能实现“长依赖”(即利用很久之前的知识),但在实际应用中发现效果并不理想,于是出现了很多RNN的变种,如常用的LSTM和GRU,它们对传统RNN的cell进行了改进,弥补了传统RNN的不足,本例中即使用了LSTM、GRU。下图是RNN(广义上包含了LSTM、GRU等)语言模型“循环”思想的示意图:
<p align=center><img src='images/rnn.png' width='500px'/></p>
### 模型实现
本例中RNN语言模型的实现简介如下:
* **定义模型参数**`config.py`中的`Config_rnn`**类**中定义了模型的参数变量。
* **定义模型结构**`network_conf.py`中的`rnn_lm`**函数**中定义了模型的**结构**,如下:
* 输入层:将输入的词(或字)序列映射成向量,即embedding。
* 中间层:根据配置实现RNN层,将上一步得到的embedding向量序列作为输入。
* 输出层:使用softmax归一化计算单词的概率,将output结果返回
* loss:定义模型的cost为多类交叉熵损失函数。
* **训练模型**`train.py`中的`main`方法实现了模型的训练,实现流程如下:
* 准备输入数据:建立并保存词典、构建train和test数据的reader。
* 初始化模型:包括模型的结构、参数。
* 构建训练器:demo中使用的是Adam优化算法。
* 定义回调函数:构建`event_handler`来跟踪训练过程中loss的变化,并在每轮训练结束时保存模型的参数。
* 训练:使用trainer训练模型。
* **生成文本**`infer.py`中的`main`方法实现了文本的生成,实现流程如下:
* 根据配置选择生成方法:RNN模型 or N-Gram模型。
* 加载train好的模型和词典文件。
* 读取`input_file`文件(每行为一个sentence的前缀),用启发式图搜索算法`beam_search`根据各sentence的前缀生成文本。
* 将生成的文本及其前缀保存到文件`output_file`
## N-Gram 语言模型
### 简介
N-Gram模型也称为N-1阶马尔科夫模型,它有一个有限历史假设:当前词的出现概率仅仅与前面N-1个词相关。一般采用最大似然估计(Maximum Likelihood Estimation,MLE)方法对模型的参数进行估计。当N取1、2、3时,N-Gram模型分别称为unigram、bigram和trigram语言模型。一般情况下,N越大、训练语料的规模越大,参数估计的结果越可靠,但由于模型较简单、表达能力不强以及数据稀疏等问题。一般情况下用N-Gram实现的语言模型不如RNN、seq2seq效果好。下图是基于神经网络的N-Gram语言模型结构示意图:
<p align=center><img src='images/ngram.png' width='500px'/></p>
### 模型实现
本例中N-Gram语言模型的实现简介如下:
* **定义模型参数**`config.py`中的`Config_ngram`**类**中定义了模型的参数变量。
* **定义模型结构**`network_conf.py`中的`ngram_lm`**函数**中定义了模型的**结构**,如下:
* 输入层:本例中N取5,将前四个词分别做embedding,然后连接起来作为输入。
* 中间层:根据配置实现DNN层,将上一步得到的embedding向量序列作为输入。
* 输出层:使用softmax归一化计算单词的概率,将output结果返回
* loss:定义模型的cost为多类交叉熵损失函数。
* **训练模型**`train.py`中的`main`方法实现了模型的训练,实现流程与上文中RNN语言模型基本一致。
* **生成文本**`infer.py`中的`main`方法实现了文本的生成,实现流程与上文中RNN语言模型基本一致,区别在于构建input时本例会取每个前缀的最后4(N-1)个词作为输入。
## 使用说明
运行本例的方法如下:
* 1,运行`python train.py`命令,开始train模型(默认使用RNN),待训练结束。
* 2,运行`python infer.py`命令做prediction。(输入的文本默认为`data/input.txt`,生成的文本默认保存到`data/output.txt`中。)
**如果用户需要使用自己的语料、定制模型,需要修改的地方主要是`语料`和`config.py`中的配置,需要注意的细节和适配工作详情如下:**
### 语料适配
* 清洗语料:去除原文中空格、tab、乱码,按需去除数字、标点符号、特殊符号等。
* 编码格式:utf-8,本例中已经对中文做了适配。
* 内容格式:每个句子占一行;每行中的各词之间使用一个空格符分开。
* 按需要配置`config.py`中对于data的配置:
```python
# -- config : data --
train_file = 'data/chinese.train.txt'
test_file = 'data/chinese.test.txt'
vocab_file = 'data/vocab_cn.txt' # the file to save vocab
build_vocab_method = 'fixed_size' # 'frequency' or 'fixed_size'
vocab_max_size = 3000 # when build_vocab_method = 'fixed_size'
unk_threshold = 1 # # when build_vocab_method = 'frequency'
min_sentence_length = 3
max_sentence_length = 60
```
其中,`build_vocab_method `指定了构建词典的方法:**1,按词频**,即将出现次数小于`unk_threshold `的词视为`<UNK>`;**2,按词典长度**,`vocab_max_size`定义了词典的最大长度,如果语料中出现的不同词的个数大于这个值,则根据各词的词频倒序排,取`top(vocab_max_size)`个词纳入词典。
其中`min_sentence_length`和`max_sentence_length `分别指定了句子的最小和最大长度,小于最小长度的和大于最大长度的句子将被过滤掉、不参与训练。
*注:需要注意的是词典越大生成的内容越丰富但训练耗时越久,一般中文分词之后,语料中不同的词能有几万乃至几十万,如果vocab\_max\_size取值过小则导致\<UNK\>占比过高,如果vocab\_max\_size取值较大则严重影响训练速度(对精度也有影响),所以也有“按字”训练模型的方式,即:把每个汉字当做一个词,常用汉字也就几千个,使得字典的大小不会太大、不会丢失太多信息,但汉语中同一个字在不同词中语义相差很大,有时导致模型效果不理想。建议用户多试试、根据实际情况选择是“按词训练”还是“按字训练”。*
### 模型适配、训练
* 按需调整`config.py`中对于模型的配置,详解如下:
```python
# -- config : train --
use_which_model = 'rnn' # must be: 'rnn' or 'ngram'
use_gpu = False # whether to use gpu
trainer_count = 1 # number of trainer
class Config_rnn(object):
"""
config for RNN language model
"""
rnn_type = 'gru' # or 'lstm'
emb_dim = 200
hidden_size = 200
num_layer = 2
num_passs = 2
batch_size = 32
model_file_name_prefix = 'lm_' + rnn_type + '_params_pass_'
class Config_ngram(object):
"""
config for N-Gram language model
"""
emb_dim = 200
hidden_size = 200
num_layer = 2
N = 5
num_passs = 2
batch_size = 32
model_file_name_prefix = 'lm_ngram_pass_'
```
其中,`use_which_model`指定了要train的模型,如果使用RNN语言模型则设置为'rnn',如果使用N-Gram语言模型则设置为'ngram';`use_gpu`指定了train的时候是否使用gpu;`trainer_count`指定了并行度、用几个trainer去train模型;`rnn_type` 用于配置rnn cell类型,可以取‘lstm’或‘gru’;`hidden_size`配置unit个数;`num_layer`配置RNN的层数;`num_passs`配置训练的轮数;`emb_dim`配置embedding的dimension;`batch_size `配置了train model时每个batch的大小;`model_file_name_prefix `配置了要保存的模型的名字前缀。
* 运行`python train.py`命令训练模型,模型将被保存到当前目录。
### 按需生成文本
* 按需调整`config.py`中对于infer的配置,详解如下:
```python
# -- config : infer --
input_file = 'data/input.txt' # input file contains sentence prefix each line
output_file = 'data/output.txt' # the file to save results
num_words = 10 # the max number of words need to generate
beam_size = 5 # beam_width, the number of the prediction sentence for each prefix
```
其中,`input_file`中保存的是待生成的文本前缀,utf-8编码,每个前缀占一行,形如:
```text
我 是
```
用户将需要生成的文本前缀按此格式存入文件即可;
`num_words`指定了要生成多少个单词(实际生成过程中遇到结束符会停止生成,所以实际生成的词个数可能会比此值小);`beam_size`指定了beam search方法的width,即每个前缀生成多少个候选词序列;`output_file`指定了生成结果的存放位置。
* 运行`python infer.py`命令生成文本,生成的结果格式如下:
```text
我 <EOS> 0.107702672482
我 爱 。我 中国 中国 <EOS> 0.000177299271939
我 爱 中国 。我 是 中国 <EOS> 4.51695544709e-05
我 爱 中国 中国 <EOS> 0.000910127729821
我 爱 中国 。我 是 <EOS> 0.00015957862922
```
其中,‘我’是前缀,其下方的五个句子时补全的结果,每个句子末尾的浮点数表示此句子的生成概率。
# coding=utf-8
# -- config : data --
train_file = 'data/chinese.train.txt'
test_file = 'data/chinese.test.txt'
vocab_file = 'data/vocab_cn.txt' # the file to save vocab
build_vocab_method = 'fixed_size' # 'frequency' or 'fixed_size'
vocab_max_size = 3000 # when build_vocab_method = 'fixed_size'
unk_threshold = 1 # # when build_vocab_method = 'frequency'
min_sentence_length = 3
max_sentence_length = 60
# -- config : train --
use_which_model = 'ngram' # must be: 'rnn' or 'ngram'
use_gpu = False # whether to use gpu
trainer_count = 1 # number of trainer
class Config_rnn(object):
"""
config for RNN language model
"""
rnn_type = 'gru' # or 'lstm'
emb_dim = 200
hidden_size = 200
num_layer = 2
num_passs = 2
batch_size = 32
model_file_name_prefix = 'lm_' + rnn_type + '_params_pass_'
class Config_ngram(object):
"""
config for N-Gram language model
"""
emb_dim = 200
hidden_size = 200
num_layer = 2
N = 5
num_passs = 2
batch_size = 32
model_file_name_prefix = 'lm_ngram_pass_'
# -- config : infer --
input_file = 'data/input.txt' # input file contains sentence prefix each line
output_file = 'data/output.txt' # the file to save results
num_words = 10 # the max number of words need to generate
beam_size = 5 # beam_width, the number of the prediction sentence for each prefix
我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。
\ No newline at end of file
我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。我 是 中国 人 。
我 爱 中国 。
\ No newline at end of file
我 是
我 是 中国
我 爱
我 是 中国 人。
我 爱 中国
我 爱 中国 。我
我 爱 中国 。我 爱
我 爱 中国 。我 是
我 爱 中国 。我 是 中国
\ No newline at end of file
# coding=utf-8
import paddle.v2 as paddle
import gzip
import numpy as np
from utils import *
import network_conf
from config import *
def generate_using_rnn(word_id_dict, num_words, beam_size):
"""
Demo: use RNN model to do prediction.
:param word_id_dict: vocab.
:type word_id_dict: dictionary with content of '{word, id}', 'word' is string type , 'id' is int type.
:param num_words: the number of the words to generate.
:type num_words: int
:param beam_size: beam width.
:type beam_size: int
:return: save prediction results to output_file
"""
# prepare and cache model
config = Config_rnn()
_, output_layer = network_conf.rnn_lm(
vocab_size=len(word_id_dict),
emb_dim=config.emb_dim,
rnn_type=config.rnn_type,
hidden_size=config.hidden_size,
num_layer=config.num_layer) # network config
model_file_name = config.model_file_name_prefix + str(config.num_passs -
1) + '.tar.gz'
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(model_file_name)) # load parameters
inferer = paddle.inference.Inference(
output_layer=output_layer, parameters=parameters)
# tools, different from generate_using_ngram's tools
id_word_dict = dict(
[(v, k) for k, v in word_id_dict.items()]) # {id : word}
def str2ids(str):
return [[[
word_id_dict.get(w, word_id_dict['<UNK>']) for w in str.split()
]]]
def ids2str(ids):
return [[[id_word_dict.get(id, ' ') for id in ids]]]
# generate text
with open(input_file) as file:
output_f = open(output_file, 'w')
for line in file:
line = line.decode('utf-8').strip()
# generate
texts = {} # type: {text : probability}
texts[line] = 1
for _ in range(num_words):
texts_new = {}
for (text, prob) in texts.items():
if '<EOS>' in text: # stop prediction when <EOS> appear
texts_new[text] = prob
continue
# next word's probability distribution
predictions = inferer.infer(input=str2ids(text))
predictions[-1][word_id_dict['<UNK>']] = -1 # filter <UNK>
# find next beam_size words
for _ in range(beam_size):
cur_maxProb_index = np.argmax(
predictions[-1]) # next word's id
text_new = text + ' ' + id_word_dict[
cur_maxProb_index] # text append next word
texts_new[text_new] = texts[text] * predictions[-1][
cur_maxProb_index]
predictions[-1][cur_maxProb_index] = -1
texts.clear()
if len(texts_new) <= beam_size:
texts = texts_new
else: # cutting
texts = dict(
sorted(
texts_new.items(), key=lambda d: d[1], reverse=True)
[:beam_size])
# save results to output file
output_f.write(line.encode('utf-8') + '\n')
for (sentence, prob) in texts.items():
output_f.write('\t' + sentence.encode('utf-8', 'replace') + '\t'
+ str(prob) + '\n')
output_f.write('\n')
output_f.close()
print('already saved results to ' + output_file)
def generate_using_ngram(word_id_dict, num_words, beam_size):
"""
Demo: use N-Gram model to do prediction.
:param word_id_dict: vocab.
:type word_id_dict: dictionary with content of '{word, id}', 'word' is string type , 'id' is int type.
:param num_words: the number of the words to generate.
:type num_words: int
:param beam_size: beam width.
:type beam_size: int
:return: save prediction results to output_file
"""
# prepare and cache model
config = Config_ngram()
_, output_layer = network_conf.ngram_lm(
vocab_size=len(word_id_dict),
emb_dim=config.emb_dim,
hidden_size=config.hidden_size,
num_layer=config.num_layer) # network config
model_file_name = config.model_file_name_prefix + str(config.num_passs -
1) + '.tar.gz'
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(model_file_name)) # load parameters
inferer = paddle.inference.Inference(
output_layer=output_layer, parameters=parameters)
# tools, different from generate_using_rnn's tools
id_word_dict = dict(
[(v, k) for k, v in word_id_dict.items()]) # {id : word}
def str2ids(str):
return [[
word_id_dict.get(w, word_id_dict['<UNK>']) for w in str.split()
]]
def ids2str(ids):
return [[id_word_dict.get(id, ' ') for id in ids]]
# generate text
with open(input_file) as file:
output_f = open(output_file, 'w')
for line in file:
line = line.decode('utf-8').strip()
words = line.split()
if len(words) < config.N:
output_f.write(line.encode('utf-8') + "\n\tnone\n")
continue
# generate
texts = {} # type: {text : probability}
texts[line] = 1
for _ in range(num_words):
texts_new = {}
for (text, prob) in texts.items():
if '<EOS>' in text: # stop prediction when <EOS> appear
texts_new[text] = prob
continue
# next word's probability distribution
predictions = inferer.infer(
input=str2ids(' '.join(text.split()[-config.N:])))
predictions[-1][word_id_dict['<UNK>']] = -1 # filter <UNK>
# find next beam_size words
for _ in range(beam_size):
cur_maxProb_index = np.argmax(
predictions[-1]) # next word's id
text_new = text + ' ' + id_word_dict[
cur_maxProb_index] # text append nextWord
texts_new[text_new] = texts[text] * predictions[-1][
cur_maxProb_index]
predictions[-1][cur_maxProb_index] = -1
texts.clear()
if len(texts_new) <= beam_size:
texts = texts_new
else: # cutting
texts = dict(
sorted(
texts_new.items(), key=lambda d: d[1], reverse=True)
[:beam_size])
# save results to output file
output_f.write(line.encode('utf-8') + '\n')
for (sentence, prob) in texts.items():
output_f.write('\t' + sentence.encode('utf-8', 'replace') + '\t'
+ str(prob) + '\n')
output_f.write('\n')
output_f.close()
print('already saved results to ' + output_file)
def main():
# init paddle
paddle.init(use_gpu=use_gpu, trainer_count=trainer_count)
# prepare and cache vocab
if os.path.isfile(vocab_file):
word_id_dict = load_vocab(vocab_file) # load word dictionary
else:
if build_vocab_method == 'fixed_size':
word_id_dict = build_vocab_with_fixed_size(
train_file, vocab_max_size) # build vocab
else:
word_id_dict = build_vocab_using_threshhold(
train_file, unk_threshold) # build vocab
save_vocab(word_id_dict, vocab_file) # save vocab
# generate
if use_which_model == 'rnn':
generate_using_rnn(
word_id_dict=word_id_dict, num_words=num_words, beam_size=beam_size)
elif use_which_model == 'ngram':
generate_using_ngram(
word_id_dict=word_id_dict, num_words=num_words, beam_size=beam_size)
else:
raise Exception('use_which_model must be rnn or ngram!')
if __name__ == "__main__":
main()
# coding=utf-8
import paddle.v2 as paddle
def rnn_lm(vocab_size, emb_dim, rnn_type, hidden_size, num_layer):
"""
RNN language model definition.
:param vocab_size: size of vocab.
:param emb_dim: embedding vector's dimension.
:param rnn_type: the type of RNN cell.
:param hidden_size: number of unit.
:param num_layer: layer number.
:return: cost and output layer of model.
"""
assert emb_dim > 0 and hidden_size > 0 and vocab_size > 0 and num_layer > 0
# input layers
input = paddle.layer.data(
name="input", type=paddle.data_type.integer_value_sequence(vocab_size))
target = paddle.layer.data(
name="target", type=paddle.data_type.integer_value_sequence(vocab_size))
# embedding layer
input_emb = paddle.layer.embedding(input=input, size=emb_dim)
# rnn layer
if rnn_type == 'lstm':
rnn_cell = paddle.networks.simple_lstm(
input=input_emb, size=hidden_size)
for _ in range(num_layer - 1):
rnn_cell = paddle.networks.simple_lstm(
input=rnn_cell, size=hidden_size)
elif rnn_type == 'gru':
rnn_cell = paddle.networks.simple_gru(input=input_emb, size=hidden_size)
for _ in range(num_layer - 1):
rnn_cell = paddle.networks.simple_gru(
input=rnn_cell, size=hidden_size)
else:
raise Exception('rnn_type error!')
# fc(full connected) and output layer
output = paddle.layer.fc(
input=[rnn_cell], size=vocab_size, act=paddle.activation.Softmax())
# loss
cost = paddle.layer.classification_cost(input=output, label=target)
return cost, output
def ngram_lm(vocab_size, emb_dim, hidden_size, num_layer):
"""
N-Gram language model definition.
:param vocab_size: size of vocab.
:param emb_dim: embedding vector's dimension.
:param hidden_size: size of unit.
:param num_layer: layer number.
:return: cost and output layer of model.
"""
assert emb_dim > 0 and hidden_size > 0 and vocab_size > 0 and num_layer > 0
def wordemb(inlayer):
wordemb = paddle.layer.table_projection(
input=inlayer,
size=emb_dim,
param_attr=paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0))
return wordemb
# input layers
first_word = paddle.layer.data(
name="first_word", type=paddle.data_type.integer_value(vocab_size))
second_word = paddle.layer.data(
name="second_word", type=paddle.data_type.integer_value(vocab_size))
third_word = paddle.layer.data(
name="third_word", type=paddle.data_type.integer_value(vocab_size))
fourth_word = paddle.layer.data(
name="fourth_word", type=paddle.data_type.integer_value(vocab_size))
next_word = paddle.layer.data(
name="next_word", type=paddle.data_type.integer_value(vocab_size))
# embedding layer
first_emb = wordemb(first_word)
second_emb = wordemb(second_word)
third_emb = wordemb(third_word)
fourth_emb = wordemb(fourth_word)
context_emb = paddle.layer.concat(
input=[first_emb, second_emb, third_emb, fourth_emb])
# hidden layer
hidden = paddle.layer.fc(
input=context_emb, size=hidden_size, act=paddle.activation.Relu())
for _ in range(num_layer - 1):
hidden = paddle.layer.fc(
input=hidden, size=hidden_size, act=paddle.activation.Relu())
# fc(full connected) and output layer
predict_word = paddle.layer.fc(
input=[hidden], size=vocab_size, act=paddle.activation.Softmax())
# loss
cost = paddle.layer.classification_cost(input=predict_word, label=next_word)
return cost, predict_word
# coding=utf-8
import collections
import os
def rnn_reader(file_name, min_sentence_length, max_sentence_length,
word_id_dict):
"""
create reader for RNN, each line is a sample.
:param file_name: file name.
:param min_sentence_length: sentence's min length.
:param max_sentence_length: sentence's max length.
:param word_id_dict: vocab with content of '{word, id}', 'word' is string type , 'id' is int type.
:return: data reader.
"""
def reader():
UNK = word_id_dict['<UNK>']
with open(file_name) as file:
for line in file:
words = line.decode('utf-8', 'ignore').strip().split()
if len(words) < min_sentence_length or len(
words) > max_sentence_length:
continue
ids = [word_id_dict.get(w, UNK) for w in words]
ids.append(word_id_dict['<EOS>'])
target = ids[1:]
target.append(word_id_dict['<EOS>'])
yield ids[:], target[:]
return reader
def ngram_reader(file_name, N, word_id_dict):
"""
create reader for N-Gram.
:param file_name: file name.
:param N: N-Gram's N.
:param word_id_dict: vocab with content of '{word, id}', 'word' is string type , 'id' is int type.
:return: data reader.
"""
assert N >= 2
def reader():
ids = []
UNK_ID = word_id_dict['<UNK>']
cache_size = 10000000
with open(file_name) as file:
for line in file:
words = line.decode('utf-8', 'ignore').strip().split()
ids += [word_id_dict.get(w, UNK_ID) for w in words]
ids_len = len(ids)
if ids_len > cache_size: # output
for i in range(ids_len - N - 1):
yield tuple(ids[i:i + N])
ids = []
ids_len = len(ids)
for i in range(ids_len - N - 1):
yield tuple(ids[i:i + N])
return reader
# coding=utf-8
import sys
import paddle.v2 as paddle
import reader
from utils import *
import network_conf
import gzip
from config import *
def train(model_cost, train_reader, test_reader, model_file_name_prefix,
num_passes):
"""
train model.
:param model_cost: cost layer of the model to train.
:param train_reader: train data reader.
:param test_reader: test data reader.
:param model_file_name_prefix: model's prefix name.
:param num_passes: epoch.
:return:
"""
# init paddle
paddle.init(use_gpu=use_gpu, trainer_count=trainer_count)
# create parameters
parameters = paddle.parameters.create(model_cost)
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
regularization=paddle.optimizer.L2Regularization(rate=1e-3),
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000))
# create trainer
trainer = paddle.trainer.SGD(
cost=model_cost, parameters=parameters, update_equation=adam_optimizer)
# define event_handler callback
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print("\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics))
else:
sys.stdout.write('.')
sys.stdout.flush()
# save model each pass
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader)
print("\nTest with Pass %d, %s" % (event.pass_id, result.metrics))
with gzip.open(
model_file_name_prefix + str(event.pass_id) + '.tar.gz',
'w') as f:
parameters.to_tar(f)
# start to train
print('start training...')
trainer.train(
reader=train_reader, event_handler=event_handler, num_passes=num_passes)
print("Training finished.")
def main():
# prepare vocab
print('prepare vocab...')
if build_vocab_method == 'fixed_size':
word_id_dict = build_vocab_with_fixed_size(
train_file, vocab_max_size) # build vocab
else:
word_id_dict = build_vocab_using_threshhold(
train_file, unk_threshold) # build vocab
save_vocab(word_id_dict, vocab_file) # save vocab
# init model and data reader
if use_which_model == 'rnn':
# init RNN model
print('prepare rnn model...')
config = Config_rnn()
cost, _ = network_conf.rnn_lm(
len(word_id_dict), config.emb_dim, config.rnn_type,
config.hidden_size, config.num_layer)
# init RNN data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.rnn_reader(train_file, min_sentence_length,
max_sentence_length, word_id_dict),
buf_size=65536),
batch_size=config.batch_size)
test_reader = paddle.batch(
paddle.reader.shuffle(
reader.rnn_reader(test_file, min_sentence_length,
max_sentence_length, word_id_dict),
buf_size=65536),
batch_size=config.batch_size)
elif use_which_model == 'ngram':
# init N-Gram model
print('prepare ngram model...')
config = Config_ngram()
assert config.N == 5
cost, _ = network_conf.ngram_lm(
vocab_size=len(word_id_dict),
emb_dim=config.emb_dim,
hidden_size=config.hidden_size,
num_layer=config.num_layer)
# init N-Gram data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.ngram_reader(train_file, config.N, word_id_dict),
buf_size=65536),
batch_size=config.batch_size)
test_reader = paddle.batch(
paddle.reader.shuffle(
reader.ngram_reader(test_file, config.N, word_id_dict),
buf_size=65536),
batch_size=config.batch_size)
else:
raise Exception('use_which_model must be rnn or ngram!')
# train model
train(
model_cost=cost,
train_reader=train_reader,
test_reader=test_reader,
model_file_name_prefix=config.model_file_name_prefix,
num_passes=config.num_passs)
if __name__ == "__main__":
main()
# coding=utf-8
import os
import collections
def save_vocab(word_id_dict, vocab_file_name):
"""
save vocab.
:param word_id_dict: dictionary with content of '{word, id}', 'word' is string type , 'id' is int type.
:param vocab_file_name: vocab file name.
"""
f = open(vocab_file_name, 'w')
for (k, v) in word_id_dict.items():
f.write(k.encode('utf-8') + '\t' + str(v) + '\n')
print('save vocab to ' + vocab_file_name)
f.close()
def load_vocab(vocab_file_name):
"""
load vocab from file.
:param vocab_file_name: vocab file name.
:return: dictionary with content of '{word, id}', 'word' is string type , 'id' is int type.
"""
assert os.path.isfile(vocab_file_name)
dict = {}
with open(vocab_file_name) as file:
for line in file:
if len(line) < 2:
continue
kv = line.decode('utf-8').strip().split('\t')
dict[kv[0]] = int(kv[1])
return dict
def build_vocab_using_threshhold(file_name, unk_threshold):
"""
build vacab using_<UNK> threshhold.
:param file_name:
:param unk_threshold: <UNK> threshhold.
:type unk_threshold: int.
:return: dictionary with content of '{word, id}', 'word' is string type , 'id' is int type.
"""
counter = {}
with open(file_name) as file:
for line in file:
words = line.decode('utf-8', 'ignore').strip().split()
for word in words:
if word in counter:
counter[word] += 1
else:
counter[word] = 1
counter_new = {}
for (word, frequency) in counter.items():
if frequency >= unk_threshold:
counter_new[word] = frequency
counter.clear()
counter_new = sorted(counter_new.items(), key=lambda d: -d[1])
words = [word_frequency[0] for word_frequency in counter_new]
word_id_dict = dict(zip(words, range(2, len(words) + 2)))
word_id_dict['<UNK>'] = 0
word_id_dict['<EOS>'] = 1
return word_id_dict
def build_vocab_with_fixed_size(file_name, vocab_max_size):
"""
build vacab with assigned max size.
:param vocab_max_size: vocab's max size.
:return: dictionary with content of '{word, id}', 'word' is string type , 'id' is int type.
"""
words = []
for line in open(file_name):
words += line.decode('utf-8', 'ignore').strip().split()
counter = collections.Counter(words)
counter = sorted(counter.items(), key=lambda x: -x[1])
if len(counter) > vocab_max_size:
counter = counter[:vocab_max_size]
words, counts = zip(*counter)
word_id_dict = dict(zip(words, range(2, len(words) + 2)))
word_id_dict['<UNK>'] = 0
word_id_dict['<EOS>'] = 1
return word_id_dict
TBD # 排序学习(Learning To Rank)
排序学习技术\[[1](#参考文献1)\]是构建排序模型的机器学习方法,在信息检索、自然语言处理,数据挖掘等机器学场景中具有重要作用。排序学习的主要目的是对给定一组文档,对任意查询请求给出反映相关性的文档排序。在本例子中,利用标注过的语料库训练两种经典排序模型RankNet[[4](#参考文献4)\]和LamdaRank[[6](#参考文献6)\],分别可以生成对应的排序模型,能够对任意查询请求,给出相关性文档排序。
RankNet模型在命令行输入:
```python
python ranknet.py
```
LambdaRank模型在命令行输入:
```python
python lambda_rank.py
```
用户只需要使用以上命令就完成排序模型的训练和预测,程序会自动下载内置数据集,无需手动下载。
## 背景介绍
排序学习技术随着互联网的快速增长而受到越来越多关注,是机器学习中的常见任务之一。一方面人工排序规则不能处理海量规模的候选数据,另一方面无法为不同渠道的候选数据给于合适的权重,因此排序学习在日常生活中应用非常广泛。排序学习起源于信息检索领域,目前仍然是许多信息检索场景中的核心模块,例如搜索引擎搜索结果排序,推荐系统候选集排序,在线广告排序等等。本例以文档检索任务阐述排序学习模型。
<p align="center">
<img src="images/search_engine_example.png" width="30%" ><br/>
图1. 排序模型在文档检索的典型应用搜索引擎中的作用
</p>
假定有一组文档$S$,文档检索任务是依据和请求的相关性,给出文档排列顺序。查询引擎根据查询请求,排序模型会给每个文档打出分数,依据打分情况倒序排列文档,得到查询结果。在训练模型时,给定一条查询,并给出对应的文档最佳排序和得分。在预测时候,给出查询请求,排序模型生成文档排序。常见的排序学习方法划分为以下三类:
- Pointwise 方法
Pointwise方法是通过近似为回归问题解决排序问题,输入的单条样本为**得分-文档**,将每个查询-文档对的相关性得分作为实数分数或者序数分数,使得单个查询-文档对作为样本点(Pointwise的由来),训练排序模型。预测时候对于指定输入,给出查询-文档对的相关性得分。
- Pairwise方法
Pairwise方法是通过近似为分类问题解决排序问题,输入的单条样本为**标签-文档对**。对于一次查询的多个结果文档,组合任意两个文档形成文档对作为输入样本。即学习一个二分类器,对输入的一对文档对AB(Pairwise的由来),根据A相关性是否比B好,二分类器给出分类标签1或0。对所有文档对进行分类,就可以得到一组偏序关系,从而构造文档全集的排序关系。该类方法的原理是对给定的文档全集$S$,降低排序中的逆序文档对的个数来降低排序错误,从而达到优化排序结果的目的。
- Listwise方法
Listwise方法是直接优化排序列表,输入为单条样本为一个**文档排列**。通过构造合适的度量函数衡量当前文档排序和最优排序差值,优化度量函数得到排序模型。由于度量函数很多具有非连续性的性质,优化困难。
<p align="center">
<img src="images/learning_to_rank.jpg" width="50%" ><br/>
图2. 排序模型三类方法
</p>
## 实验数据
本例中的实验数据采用了排序学习中的基准数据[LETOR]([http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar](http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar))语料库,部分来自于Gov2网站的查询请求结果,包含了约1700条查询请求结果文档列表,并对文档相关性做出了人工标注。其中,一条查询含有唯一的查询id,对应于多个具有相关性的文档,构成了一次查询请求结果文档列表。每个文档由一个一维数组的特征向量表示,并对应一个人工标注与查询的相关性分数。
本例在第一次运行的时会自动下载LETOR MQ2007数据集并缓存,无需手动下载。
`mq2007`数据集分别提供了三种类型排序模型的生成格式,需要指定生成格式`format`
例如调用接口
```python
pairwise_train_dataset = functools.partial(paddle.dataset.mq2007.train, format="pairwise")
for label, left_doc, right_doc in pairwise_train_dataset():
...
```
## 模型概览
对于排序模型,本例中提供了Pairwise方法的模型RankNet和Listwise方法的模型LambdaRank,分别代表了两类学习方法。Pointwise方法的排序模型退化为回归问题,请参考PaddleBook中[推荐系统](https://github.com/PaddlePaddle/book/blob/develop/05.recommender_system/README.cn.md)一课。
## RankNet排序模型
[RankNet](http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)是一种经典的Pairwise的排序学习方法,是典型的前向神经网络排序模型。在文档集合$S$中的第$i$个文档记做$U_i$,它的文档特征向量记做$x_i$,对于给定的一个文档对$U_i$, $U_j$,RankNet将输入的单个文档特征向量$x$映射到$f(x)$,得到$s_i=f(x_i)$, $s_j=f(x_j)$。将$U_i$相关性比$U_j$好的概率记做$P_{i,j}$,则
$$P_{i,j}=P(U_{i}>U_{j})=\frac{1}{1+e^{-\sigma (s_{i}-s_{j}))}}$$
由于排序度量函数大多数非连续,非光滑,因此RankNet需要一个可以优化的度量函数$C$。首先使用交叉熵作为度量函数衡量预测代价,将损失函数$C$记做
$$C_{i,j}=-\bar{P_{i,j}}logP_{i,j}-(1-\bar{P_{i,j}})log(1-P_{i,j})$$
其中$\bar{P_{i,j}}$代表真实概率,记做
$$\bar{P_{i,j}}=\frac{1}{2}(1+S_{i,j})$$
而$S_{i,j}$ = {+1,0},表示$U_i$和$U_j$组成的Pair的标签,即Ui相关性是否好于$U_j$。
最终得到了可求导的度量损失函数
$$C=\frac{1}{2}(1-S_{i,j})\sigma (s_{i}-s{j})+log(1+e^{-\sigma (s_{i}-s_{j})})$$
可以使用常规的梯度下降方法进行优化。细节见[RankNet](http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
同时,得到文档$U_i$在排序优化过程的梯度信息为
$$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}} = \frac{1}{2}(1-S_{i,j})-\frac{1}{1+e^{\sigma (s_{i}-s_{j})}}$$
表示的含义是本轮排序优化过程中文档$U_i$的上升或者下降量。
根据以上推论构造RankNet网络结构,由若干层隐藏层和全连接层构成,如图所示,将文档特征使用隐藏层,全连接层逐层变换,完成了底层特征空间到高层特征空间的变换。其中docA和docB结构对称,分别输入到最终的RankCost层中。
<p align="center">
<img src="images/ranknet.jpg" width="50%" ><br/>
图3. RankNet网络结构示意图
</p>
- 全连接层(fully connected layer) : 指上一层中的每个节点都连接到下层网络。本例子中同样使用`paddle.layer.fc`实现,注意输入到RankCost层的全连接层维度为1。
- RankCost层: RankCost层是排序网络RankNet的核心,度量docA相关性是否比docB好,给出预测值并和label比较。使用了交叉熵(cross enctropy)作为度量损失函数,使用梯度下降方法进行优化。细节可见[RankNet](http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)[4]
由于Pairwise中的网络结构是左右对称,可定义一半网络结构,另一半共享网络参数。在PaddlePaddle中允许网络结构中共享连接,具有相同名字的参数将会共享参数。使用PaddlePaddle实现RankNet排序模型,定义网络结构的示例代码如下:
```python
import paddle.v2 as paddle
def half_ranknet(name_prefix, input_dim):
"""
parameter with a same name will be shared in PaddlePaddle framework,
these parameters in ranknet can be used in shared state, e.g. left network and right network in detail
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/api.md
"""
# data layer
data = paddle.layer.data(name_prefix+"/data", paddle.data_type.dense_vector(input_dim))
# fully connect layer
hd1 = paddle.layer.fc(
input=data,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01, name="hidden_w1"))
# fully connected layer/ output layer
output = paddle.layer.fc(
input=hd1,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01, name="output"))
return output
def ranknet(input_dim):
# label layer
label = paddle.layer.data("label", paddle.data_type.integer_value(1))
# reuse the parameter in half_ranknet
output_left = half_ranknet("left", input_dim)
output_right = half_ranknet("right", input_dim)
# rankcost layer
cost = paddle.layer.rank_cost(name="cost", left=output_left, right=output_right, label=label)
return cost
```
上述结构中使用了和图3相同的模型结构:两层隐藏层,分别是`hidden_size=10`的全连接层和`hidden_size=1`的全连接层。本例中的input_dim指输入**单个文档**的特征的维度,label取值为1,0。每条输入样本为`<label>,<docA, docB>`的结构,以docA为例,输入`input_dim`的文档特征,依次变换成10维,1维特征,最终输入到RankCost层中,比较docA和docB在RankCost输出得到预测值。
### RankNet模型训练
RankNet的训练只需要运行命令:
```python
python ranknet.py
```
将会自动下载数据,训练RankNet模型,并将每个轮次的模型参数存储下来。
### RankNet模型预测
本例提供了rankNet模型的训练和预测两个部分。完成训练后的模型分为拓扑结构(需要注意`rank_cost`不是模型拓扑结构的一部分)和模型参数文件两部分。在本例子中复用了`ranknet`训练时的模型拓扑结构`half_ranknet`,模型参数从外存中加载。模型预测的输入为单个文档的特征向量,模型会给出相关性得分。将预测得分排序即可得到最终的文档相关性排序结果。
## 用户自定义RankNet数据
上述的代码使用了PaddlePaddle内置的排序数据,如果希望使用自定义格式数据,可以参考PaddlePaddle内置的`mq2007`数据集,编写一个新的生成器函数。例如输入数据为如下格式,只包含doc0-doc2三个文档。
\<query_id\> \<relevance_score\> \<feature_vector\>的格式(featureid: feature_value)
```
query_id : 1, relevance_score:1, feature_vector 0:0.1, 1:0.2, 2:0.4 #doc0
query_id : 1, relevance_score:2, feature_vector 0:0.3, 1:0.1, 2:0.4 #doc1
query_id : 1, relevance_score:0, feature_vector 0:0.2, 1:0.4, 2:0.1 #doc2
query_id : 2, relevance_score:0, feature_vector 0:0.1, 1:0.4, 2:0.1 #doc0
.....
```
需要将输入样本转换为Pairwise的输入格式,例如组合生成格式与mq2007 Pairwise格式相同的结构
\<label\> \<docA_feature_vector\>\<docB_feature_vector\>
```
1 doc1 doc0
1 doc1 doc2
1 doc0 doc2
....
```
注意,一般在Pairwise格式的数据中,label=1表示docA和查询的相关性好于docB,事实上label信息隐含在docA和docB组合pair中。如果存在`0 docA docB`,交换顺序构造`1 docB docA`即可。
另外组合所有的pair会有训练数据冗余,因为可以从部分偏序关系恢复文档集上的全序关系。相关研究见[PairWise approach](http://www.machinelearning.org/proceedings/icml2007/papers/139.pdf)[[5](#参考文献5)\],本例不予赘述。
```python
# a customized data generator
def gen_pairwise_data(text_line_of_data):
"""
return :
------
label : np.array, shape=(1)
docA_feature_vector : np.array, shape=(1, feature_dimension)
docA_feature_vector : np.array, shape=(1, feature_dimension)
"""
return label, docA_feature_vector, docB_feature_vector
```
对应于paddle的输入中,`integer_value`为单个整数,`dense_vector`为实数一维向量,与生成器对应,需要在训练模型之前指明输入数据对应关系。
```python
# Define the input data order
feeding = { "label":0,
"left/data" :1,
"right/data":2}
```
## LambdaRank排序模型
[LambdaRank](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)\[[6](#参考文献))\]是Listwise的排序方法,是Bugers[6]等人从RankNet发展而来,使用构造lambda函数(LambdaRank名字的由来)的方法优化度量标准NDCG(Normalized Discounted Cumulative Gain),每个查询后得到的结果文档列表都单独作为一个训练样本。NDCG是信息论中很衡量文档列表排序质量的标准之一,前$K$个文档的NDCG得分记做
$$NDCG@K=Z_{k}\sum (2^{rel_{i}})1/log(k+1)$$
前文中RankNet中推导出,文档排序需要的是排序错误的梯度信息。NDCG度量函数是非光滑,非连续的,不能直接求得梯度信息,因此将|delta(NDCG)|=|NDCG(new) - NDCG(old)|引入,构造lambda函数为
$$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}}=-\frac{\sigma }{1+e^{\sigma (s_{i}-s{j})}}|\Delta NDCG|$$
替换RankNet中的梯度表示,得到的排序模型称为[LambdaRank](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)
由以上推导可知,LambdaRank网络结构和RankNet结构非常相似。如图所示
<p align="center">
<img src="images/lambdarank.jpg" width="50%" ><br/>
图4. LambdaRank的网络结构示意图
</p>
一个查询得到的结果文档列表作为一条样本输入到网络中,替换RankCost为LambdaCost层,其他结构与RankNet相同。
- LambdaCost层 : LambdaCost层使用NDCG差值作为Lambda函数,score是一个一维的序列,对于单调训练样本全连接层输出的是1x1的序列,二者的序列长度都等于该条查询得到的文档数量。Lambda函数的构造详细见[LambdaRank](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)
使用PaddlePaddle定义LambdaRank网络结构的示例代码如下:
```python
import paddle.v2 as paddle
def lambda_rank(input_dim):
"""
lambda_rank is a ListWise Rank Model, input data and label must be sequence
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
dense_vector_sequence format
[[f, ...], [f, ...], ...], f is represent for an float or int number
"""
label = paddle.layer.data("label",
paddle.data_type.dense_vector_sequence(1))
data = paddle.layer.data("data",
paddle.data_type.dense_vector_sequence(input_dim))
# hidden layer
hd1 = paddle.layer.fc(
input=data,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01))
output = paddle.layer.fc(
input=hd1,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01))
# cost layer
cost = paddle.layer.lambda_cost(
input=output, score=label, NDCG_num=6, max_sort_size=-1)
return cost, output
```
上述结构中使用了和图3相同的模型结构。和RankNet相似,分别使用了`hidden_size=10``hidden_size=1`的两个全连接层。本例中的input_dim指输入**单个文档**的特征的维度。每条输入样本为label,\<docA, docB\>的结构,以docA为例,输入input_dim的文档特征,依次变换成10维,1维特征,最终输入到LambdaCost层中。需要注意这里的label和data格式为**dense_vector_sequence**,表示一列文档得分或者文档特征组成的**序列**
### LambdaRank模型训练
训练LambdaRank模型只需要运行命令:
```python
python lambda_rank.py
```
脚本会自动下载数据,训练LambdaRank模型,并将每个轮次的模型存储下来。
### LambdaRank模型预测
LambdaRank模型预测过程和RankNet相同。预测时的模型拓扑结构复用代码中的模型定义,从外存加载对应的参数文件。预测时的输入是文档列表,输出是该文档列表的各个文档相关性打分,根据打分对文档进行重新排序,即可得到最终的文档排序结果。
## 自定义 LambdaRank数据
上面的代码使用了PaddlePaddle内置的mq2007数据,如果希望使用自定义格式数据,可以参考PaddlePaddle内置的`mq2007`数据集,编写一个生成器函数。例如输入数据为如下格式,只包含doc0-doc2三个文档。
\<query_id\> \<relevance_score\> \<feature_vector\>的格式
```
query_id : 1, relevance_score:1, feature_vector 0:0.1, 1:0.2, 2:0.4 #doc0
query_id : 1, relevance_score:2, feature_vector 0:0.3, 1:0.1, 2:0.4 #doc1
query_id : 1, relevance_score:0, feature_vector 0:0.2, 1:0.4, 2:0.1 #doc2
query_id : 2, relevance_score:0, feature_vector 0:0.1, 1:0.4, 2:0.1 #doc0
query_id : 2, relevance_score:2, feature_vector 0:0.1, 1:0.4, 2:0.1 #doc1
.....
```
需要转换为Listwise格式,例如
<query_id><relevance_score> <feature_vector>
```tex
1 1 0.1,0.2,0.4
1 2 0.3,0.1,0.4
1 0 0.2,0.4,0.1
2 0 0.1,0.4,0.1
2 2 0.1,0.4,0.1
......
```
**数据格式注意**
- 数据中每条样本对应的文档数量都必须大于`lambda_cost`层的NDCG_num
- 若单条样本对应的文档都为0,文档相关性都为0,NDCG计算无效,那么可以判定该query无效,我们在训练中过滤掉了这样的query。
```python
# self define data generator
def gen_listwise_data(text_all_lines_of_data):
"""
return :
------
label : np.array, shape=(samples_num, )
querylist : np.array, shape=(samples_num, feature_dimension)
"""
return label_list, query_docs_feature_vector_matrix
```
对应于PaddlePaddle输入,`label`的类型为`dense_vector_sequence`,是得分的序列,`data`的类型为`dense_vector_sequence`,是特征向量的序列输入,`input_dim`为单个文档的一维特征向量维度,与生成器对应,需要在训练模型之前指明输入数据对应关系。
```python
# Define the input data order
feeding = {"label":0,
"data" : 1}
```
## 总结
LTR在实际生活中有着广泛的应用。排序模型构造方法一般可划分为PointWise方法,Pairwise方法,Listwise方法,本例以LETOR的mq2007数据为例子,阐述了Pairwise的经典方法RankNet和Listwise方法中的LambdaRank,展示如何使用PaddlePaddle框架构造对应的排序模型结构,并提供了自定义数据类型样例。PaddlePaddle提供了灵活的编程接口,并可以使用一套代码运行在单机单GPU和多机分布式多GPU下实现LTR类型任务。
## 参考文献
1. https://en.wikipedia.org/wiki/Learning_to_rank
2. Liu T Y. [Learning to rank for information retrieval](http://ftp.nowpublishers.com/article/DownloadSummary/INR-016)[J]. Foundations and Trends® in Information Retrieval, 2009, 3(3): 225-331.
3. Li H. [Learning to rank for information retrieval and natural language processing](http://www.morganclaypool.com/doi/abs/10.2200/S00607ED2V01Y201410HLT026)[J]. Synthesis Lectures on Human Language Technologies, 2014, 7(3): 1-121.
4. Burges C, Shaked T, Renshaw E, et al. [Learning to rank using gradient descent](http://machinelearning.wustl.edu/mlpapers/paper_files/icml2005_BurgesSRLDHH05.pdf)[C]//Proceedings of the 22nd international conference on Machine learning. ACM, 2005: 89-96.
5. Cao Z, Qin T, Liu T Y, et al. [Learning to rank: from pairwise approach to listwise approach](http://machinelearning.wustl.edu/mlpapers/paper_files/icml2007_CaoQLTL07.pdf)[C]//Proceedings of the 24th international conference on Machine learning. ACM, 2007: 129-136.
6. Burges C J C, Ragno R, Le Q V. [Learning to rank with nonsmooth cost functions](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)[C]//NIPS. 2006, 6: 193-200.
<html>
<head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
<script type="text/javascript" src="../.tools/theme/marked.js">
</script>
<link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
<script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
<link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
<link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
}
</style>
<body>
<div id="context" class="container-fluid markdown-body">
</div>
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# 排序学习(Learning To Rank)
排序学习技术\[[1](#参考文献1)\]是构建排序模型的机器学习方法,在信息检索、自然语言处理,数据挖掘等机器学场景中具有重要作用。排序学习的主要目的是对给定一组文档,对任意查询请求给出反映相关性的文档排序。在本例子中,利用标注过的语料库训练两种经典排序模型RankNet[[4](#参考文献4)\]和LamdaRank[[6](#参考文献6)\],分别可以生成对应的排序模型,能够对任意查询请求,给出相关性文档排序。
RankNet模型在命令行输入:
```python
python ranknet.py
```
LambdaRank模型在命令行输入:
```python
python lambda_rank.py
```
用户只需要使用以上命令就完成排序模型的训练和预测,程序会自动下载内置数据集,无需手动下载。
## 背景介绍
排序学习技术随着互联网的快速增长而受到越来越多关注,是机器学习中的常见任务之一。一方面人工排序规则不能处理海量规模的候选数据,另一方面无法为不同渠道的候选数据给于合适的权重,因此排序学习在日常生活中应用非常广泛。排序学习起源于信息检索领域,目前仍然是许多信息检索场景中的核心模块,例如搜索引擎搜索结果排序,推荐系统候选集排序,在线广告排序等等。本例以文档检索任务阐述排序学习模型。
<p align="center">
<img src="images/search_engine_example.png" width="30%" ><br/>
图1. 排序模型在文档检索的典型应用搜索引擎中的作用
</p>
假定有一组文档$S$,文档检索任务是依据和请求的相关性,给出文档排列顺序。查询引擎根据查询请求,排序模型会给每个文档打出分数,依据打分情况倒序排列文档,得到查询结果。在训练模型时,给定一条查询,并给出对应的文档最佳排序和得分。在预测时候,给出查询请求,排序模型生成文档排序。常见的排序学习方法划分为以下三类:
- Pointwise 方法
Pointwise方法是通过近似为回归问题解决排序问题,输入的单条样本为**得分-文档**,将每个查询-文档对的相关性得分作为实数分数或者序数分数,使得单个查询-文档对作为样本点(Pointwise的由来),训练排序模型。预测时候对于指定输入,给出查询-文档对的相关性得分。
- Pairwise方法
Pairwise方法是通过近似为分类问题解决排序问题,输入的单条样本为**标签-文档对**。对于一次查询的多个结果文档,组合任意两个文档形成文档对作为输入样本。即学习一个二分类器,对输入的一对文档对AB(Pairwise的由来),根据A相关性是否比B好,二分类器给出分类标签1或0。对所有文档对进行分类,就可以得到一组偏序关系,从而构造文档全集的排序关系。该类方法的原理是对给定的文档全集$S$,降低排序中的逆序文档对的个数来降低排序错误,从而达到优化排序结果的目的。
- Listwise方法
Listwise方法是直接优化排序列表,输入为单条样本为一个**文档排列**。通过构造合适的度量函数衡量当前文档排序和最优排序差值,优化度量函数得到排序模型。由于度量函数很多具有非连续性的性质,优化困难。
<p align="center">
<img src="images/learning_to_rank.jpg" width="50%" ><br/>
图2. 排序模型三类方法
</p>
## 实验数据
本例中的实验数据采用了排序学习中的基准数据[LETOR]([http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar](http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar))语料库,部分来自于Gov2网站的查询请求结果,包含了约1700条查询请求结果文档列表,并对文档相关性做出了人工标注。其中,一条查询含有唯一的查询id,对应于多个具有相关性的文档,构成了一次查询请求结果文档列表。每个文档由一个一维数组的特征向量表示,并对应一个人工标注与查询的相关性分数。
本例在第一次运行的时会自动下载LETOR MQ2007数据集并缓存,无需手动下载。
`mq2007`数据集分别提供了三种类型排序模型的生成格式,需要指定生成格式`format`
例如调用接口
```python
pairwise_train_dataset = functools.partial(paddle.dataset.mq2007.train, format="pairwise")
for label, left_doc, right_doc in pairwise_train_dataset():
...
```
## 模型概览
对于排序模型,本例中提供了Pairwise方法的模型RankNet和Listwise方法的模型LambdaRank,分别代表了两类学习方法。Pointwise方法的排序模型退化为回归问题,请参考PaddleBook中[推荐系统](https://github.com/PaddlePaddle/book/blob/develop/05.recommender_system/README.cn.md)一课。
## RankNet排序模型
[RankNet](http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)是一种经典的Pairwise的排序学习方法,是典型的前向神经网络排序模型。在文档集合$S$中的第$i$个文档记做$U_i$,它的文档特征向量记做$x_i$,对于给定的一个文档对$U_i$, $U_j$,RankNet将输入的单个文档特征向量$x$映射到$f(x)$,得到$s_i=f(x_i)$, $s_j=f(x_j)$。将$U_i$相关性比$U_j$好的概率记做$P_{i,j}$,则
$$P_{i,j}=P(U_{i}>U_{j})=\frac{1}{1+e^{-\sigma (s_{i}-s_{j}))}}$$
由于排序度量函数大多数非连续,非光滑,因此RankNet需要一个可以优化的度量函数$C$。首先使用交叉熵作为度量函数衡量预测代价,将损失函数$C$记做
$$C_{i,j}=-\bar{P_{i,j}}logP_{i,j}-(1-\bar{P_{i,j}})log(1-P_{i,j})$$
其中$\bar{P_{i,j}}$代表真实概率,记做
$$\bar{P_{i,j}}=\frac{1}{2}(1+S_{i,j})$$
而$S_{i,j}$ = {+1,0},表示$U_i$和$U_j$组成的Pair的标签,即Ui相关性是否好于$U_j$。
最终得到了可求导的度量损失函数
$$C=\frac{1}{2}(1-S_{i,j})\sigma (s_{i}-s{j})+log(1+e^{-\sigma (s_{i}-s_{j})})$$
可以使用常规的梯度下降方法进行优化。细节见[RankNet](http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
同时,得到文档$U_i$在排序优化过程的梯度信息为
$$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}} = \frac{1}{2}(1-S_{i,j})-\frac{1}{1+e^{\sigma (s_{i}-s_{j})}}$$
表示的含义是本轮排序优化过程中文档$U_i$的上升或者下降量。
根据以上推论构造RankNet网络结构,由若干层隐藏层和全连接层构成,如图所示,将文档特征使用隐藏层,全连接层逐层变换,完成了底层特征空间到高层特征空间的变换。其中docA和docB结构对称,分别输入到最终的RankCost层中。
<p align="center">
<img src="images/ranknet.jpg" width="50%" ><br/>
图3. RankNet网络结构示意图
</p>
- 全连接层(fully connected layer) : 指上一层中的每个节点都连接到下层网络。本例子中同样使用`paddle.layer.fc`实现,注意输入到RankCost层的全连接层维度为1。
- RankCost层: RankCost层是排序网络RankNet的核心,度量docA相关性是否比docB好,给出预测值并和label比较。使用了交叉熵(cross enctropy)作为度量损失函数,使用梯度下降方法进行优化。细节可见[RankNet](http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)[4]。
由于Pairwise中的网络结构是左右对称,可定义一半网络结构,另一半共享网络参数。在PaddlePaddle中允许网络结构中共享连接,具有相同名字的参数将会共享参数。使用PaddlePaddle实现RankNet排序模型,定义网络结构的示例代码如下:
```python
import paddle.v2 as paddle
def half_ranknet(name_prefix, input_dim):
"""
parameter with a same name will be shared in PaddlePaddle framework,
these parameters in ranknet can be used in shared state, e.g. left network and right network in detail
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/api.md
"""
# data layer
data = paddle.layer.data(name_prefix+"/data", paddle.data_type.dense_vector(input_dim))
# fully connect layer
hd1 = paddle.layer.fc(
input=data,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01, name="hidden_w1"))
# fully connected layer/ output layer
output = paddle.layer.fc(
input=hd1,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01, name="output"))
return output
def ranknet(input_dim):
# label layer
label = paddle.layer.data("label", paddle.data_type.integer_value(1))
# reuse the parameter in half_ranknet
output_left = half_ranknet("left", input_dim)
output_right = half_ranknet("right", input_dim)
# rankcost layer
cost = paddle.layer.rank_cost(name="cost", left=output_left, right=output_right, label=label)
return cost
```
上述结构中使用了和图3相同的模型结构:两层隐藏层,分别是`hidden_size=10`的全连接层和`hidden_size=1`的全连接层。本例中的input_dim指输入**单个文档**的特征的维度,label取值为1,0。每条输入样本为`<label><docA, docB>`的结构,以docA为例,输入`input_dim`的文档特征,依次变换成10维,1维特征,最终输入到RankCost层中,比较docA和docB在RankCost输出得到预测值。
### RankNet模型训练
RankNet的训练只需要运行命令:
```python
python ranknet.py
```
将会自动下载数据,训练RankNet模型,并将每个轮次的模型参数存储下来。
### RankNet模型预测
本例提供了rankNet模型的训练和预测两个部分。完成训练后的模型分为拓扑结构(需要注意`rank_cost`不是模型拓扑结构的一部分)和模型参数文件两部分。在本例子中复用了`ranknet`训练时的模型拓扑结构`half_ranknet`,模型参数从外存中加载。模型预测的输入为单个文档的特征向量,模型会给出相关性得分。将预测得分排序即可得到最终的文档相关性排序结果。
## 用户自定义RankNet数据
上述的代码使用了PaddlePaddle内置的排序数据,如果希望使用自定义格式数据,可以参考PaddlePaddle内置的`mq2007`数据集,编写一个新的生成器函数。例如输入数据为如下格式,只包含doc0-doc2三个文档。
\<query_id\> \<relevance_score\> \<feature_vector\>的格式(featureid: feature_value)
```
query_id : 1, relevance_score:1, feature_vector 0:0.1, 1:0.2, 2:0.4 #doc0
query_id : 1, relevance_score:2, feature_vector 0:0.3, 1:0.1, 2:0.4 #doc1
query_id : 1, relevance_score:0, feature_vector 0:0.2, 1:0.4, 2:0.1 #doc2
query_id : 2, relevance_score:0, feature_vector 0:0.1, 1:0.4, 2:0.1 #doc0
.....
```
需要将输入样本转换为Pairwise的输入格式,例如组合生成格式与mq2007 Pairwise格式相同的结构
\<label\> \<docA_feature_vector\>\<docB_feature_vector\>
```
1 doc1 doc0
1 doc1 doc2
1 doc0 doc2
....
```
注意,一般在Pairwise格式的数据中,label=1表示docA和查询的相关性好于docB,事实上label信息隐含在docA和docB组合pair中。如果存在`0 docA docB`,交换顺序构造`1 docB docA`即可。
另外组合所有的pair会有训练数据冗余,因为可以从部分偏序关系恢复文档集上的全序关系。相关研究见[PairWise approach](http://www.machinelearning.org/proceedings/icml2007/papers/139.pdf)[[5](#参考文献5)\],本例不予赘述。
```python
# a customized data generator
def gen_pairwise_data(text_line_of_data):
"""
return :
------
label : np.array, shape=(1)
docA_feature_vector : np.array, shape=(1, feature_dimension)
docA_feature_vector : np.array, shape=(1, feature_dimension)
"""
return label, docA_feature_vector, docB_feature_vector
```
对应于paddle的输入中,`integer_value`为单个整数,`dense_vector`为实数一维向量,与生成器对应,需要在训练模型之前指明输入数据对应关系。
```python
# Define the input data order
feeding = { "label":0,
"left/data" :1,
"right/data":2}
```
## LambdaRank排序模型
[LambdaRank](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)\[[6](#参考文献))\]是Listwise的排序方法,是Bugers[6]等人从RankNet发展而来,使用构造lambda函数(LambdaRank名字的由来)的方法优化度量标准NDCG(Normalized Discounted Cumulative Gain),每个查询后得到的结果文档列表都单独作为一个训练样本。NDCG是信息论中很衡量文档列表排序质量的标准之一,前$K$个文档的NDCG得分记做
$$NDCG@K=Z_{k}\sum (2^{rel_{i}})1/log(k+1)$$
前文中RankNet中推导出,文档排序需要的是排序错误的梯度信息。NDCG度量函数是非光滑,非连续的,不能直接求得梯度信息,因此将|delta(NDCG)|=|NDCG(new) - NDCG(old)|引入,构造lambda函数为
$$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}}=-\frac{\sigma }{1+e^{\sigma (s_{i}-s{j})}}|\Delta NDCG|$$
替换RankNet中的梯度表示,得到的排序模型称为[LambdaRank](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)
由以上推导可知,LambdaRank网络结构和RankNet结构非常相似。如图所示
<p align="center">
<img src="images/lambdarank.jpg" width="50%" ><br/>
图4. LambdaRank的网络结构示意图
</p>
一个查询得到的结果文档列表作为一条样本输入到网络中,替换RankCost为LambdaCost层,其他结构与RankNet相同。
- LambdaCost层 : LambdaCost层使用NDCG差值作为Lambda函数,score是一个一维的序列,对于单调训练样本全连接层输出的是1x1的序列,二者的序列长度都等于该条查询得到的文档数量。Lambda函数的构造详细见[LambdaRank](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)
使用PaddlePaddle定义LambdaRank网络结构的示例代码如下:
```python
import paddle.v2 as paddle
def lambda_rank(input_dim):
"""
lambda_rank is a ListWise Rank Model, input data and label must be sequence
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
dense_vector_sequence format
[[f, ...], [f, ...], ...], f is represent for an float or int number
"""
label = paddle.layer.data("label",
paddle.data_type.dense_vector_sequence(1))
data = paddle.layer.data("data",
paddle.data_type.dense_vector_sequence(input_dim))
# hidden layer
hd1 = paddle.layer.fc(
input=data,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01))
output = paddle.layer.fc(
input=hd1,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01))
# cost layer
cost = paddle.layer.lambda_cost(
input=output, score=label, NDCG_num=6, max_sort_size=-1)
return cost, output
```
上述结构中使用了和图3相同的模型结构。和RankNet相似,分别使用了`hidden_size=10`和`hidden_size=1`的两个全连接层。本例中的input_dim指输入**单个文档**的特征的维度。每条输入样本为label,\<docA, docB\>的结构,以docA为例,输入input_dim的文档特征,依次变换成10维,1维特征,最终输入到LambdaCost层中。需要注意这里的label和data格式为**dense_vector_sequence**,表示一列文档得分或者文档特征组成的**序列**。
### LambdaRank模型训练
训练LambdaRank模型只需要运行命令:
```python
python lambda_rank.py
```
脚本会自动下载数据,训练LambdaRank模型,并将每个轮次的模型存储下来。
### LambdaRank模型预测
LambdaRank模型预测过程和RankNet相同。预测时的模型拓扑结构复用代码中的模型定义,从外存加载对应的参数文件。预测时的输入是文档列表,输出是该文档列表的各个文档相关性打分,根据打分对文档进行重新排序,即可得到最终的文档排序结果。
## 自定义 LambdaRank数据
上面的代码使用了PaddlePaddle内置的mq2007数据,如果希望使用自定义格式数据,可以参考PaddlePaddle内置的`mq2007`数据集,编写一个生成器函数。例如输入数据为如下格式,只包含doc0-doc2三个文档。
\<query_id\> \<relevance_score\> \<feature_vector\>的格式
```
query_id : 1, relevance_score:1, feature_vector 0:0.1, 1:0.2, 2:0.4 #doc0
query_id : 1, relevance_score:2, feature_vector 0:0.3, 1:0.1, 2:0.4 #doc1
query_id : 1, relevance_score:0, feature_vector 0:0.2, 1:0.4, 2:0.1 #doc2
query_id : 2, relevance_score:0, feature_vector 0:0.1, 1:0.4, 2:0.1 #doc0
query_id : 2, relevance_score:2, feature_vector 0:0.1, 1:0.4, 2:0.1 #doc1
.....
```
需要转换为Listwise格式,例如
<query_id><relevance_score> <feature_vector>
```tex
1 1 0.1,0.2,0.4
1 2 0.3,0.1,0.4
1 0 0.2,0.4,0.1
2 0 0.1,0.4,0.1
2 2 0.1,0.4,0.1
......
```
**数据格式注意**
- 数据中每条样本对应的文档数量都必须大于`lambda_cost`层的NDCG_num
- 若单条样本对应的文档都为0,文档相关性都为0,NDCG计算无效,那么可以判定该query无效,我们在训练中过滤掉了这样的query。
```python
# self define data generator
def gen_listwise_data(text_all_lines_of_data):
"""
return :
------
label : np.array, shape=(samples_num, )
querylist : np.array, shape=(samples_num, feature_dimension)
"""
return label_list, query_docs_feature_vector_matrix
```
对应于PaddlePaddle输入,`label`的类型为`dense_vector_sequence`,是得分的序列,`data`的类型为`dense_vector_sequence`,是特征向量的序列输入,`input_dim`为单个文档的一维特征向量维度,与生成器对应,需要在训练模型之前指明输入数据对应关系。
```python
# Define the input data order
feeding = {"label":0,
"data" : 1}
```
## 总结
LTR在实际生活中有着广泛的应用。排序模型构造方法一般可划分为PointWise方法,Pairwise方法,Listwise方法,本例以LETOR的mq2007数据为例子,阐述了Pairwise的经典方法RankNet和Listwise方法中的LambdaRank,展示如何使用PaddlePaddle框架构造对应的排序模型结构,并提供了自定义数据类型样例。PaddlePaddle提供了灵活的编程接口,并可以使用一套代码运行在单机单GPU和多机分布式多GPU下实现LTR类型任务。
## 参考文献
1. https://en.wikipedia.org/wiki/Learning_to_rank
2. Liu T Y. [Learning to rank for information retrieval](http://ftp.nowpublishers.com/article/DownloadSummary/INR-016)[J]. Foundations and Trends® in Information Retrieval, 2009, 3(3): 225-331.
3. Li H. [Learning to rank for information retrieval and natural language processing](http://www.morganclaypool.com/doi/abs/10.2200/S00607ED2V01Y201410HLT026)[J]. Synthesis Lectures on Human Language Technologies, 2014, 7(3): 1-121.
4. Burges C, Shaked T, Renshaw E, et al. [Learning to rank using gradient descent](http://machinelearning.wustl.edu/mlpapers/paper_files/icml2005_BurgesSRLDHH05.pdf)[C]//Proceedings of the 22nd international conference on Machine learning. ACM, 2005: 89-96.
5. Cao Z, Qin T, Liu T Y, et al. [Learning to rank: from pairwise approach to listwise approach](http://machinelearning.wustl.edu/mlpapers/paper_files/icml2007_CaoQLTL07.pdf)[C]//Proceedings of the 24th international conference on Machine learning. ACM, 2007: 129-136.
6. Burges C J C, Ragno R, Le Q V. [Learning to rank with nonsmooth cost functions](https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf)[C]//NIPS. 2006, 6: 193-200.
</div>
<!-- You can change the lines below now. -->
<script type="text/javascript">
marked.setOptions({
renderer: new marked.Renderer(),
gfm: true,
breaks: false,
smartypants: true,
highlight: function(code, lang) {
code = code.replace(/&amp;/g, "&")
code = code.replace(/&gt;/g, ">")
code = code.replace(/&lt;/g, "<")
code = code.replace(/&nbsp;/g, " ")
return hljs.highlightAuto(code, [lang]).value;
}
});
document.getElementById("context").innerHTML = marked(
document.getElementById("markdown").innerHTML)
</script>
</body>
import os, sys
import gzip
import paddle.v2 as paddle
import numpy as np
import functools
def lambda_rank(input_dim):
"""
lambda_rank is a Listwise rank model, the input data and label must be sequences.
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
format of the dense_vector_sequence:
[[f, ...], [f, ...], ...], f is a float or an int number
"""
label = paddle.layer.data("label",
paddle.data_type.dense_vector_sequence(1))
data = paddle.layer.data("data",
paddle.data_type.dense_vector_sequence(input_dim))
# hidden layer
hd1 = paddle.layer.fc(
input=data,
size=128,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01))
hd2 = paddle.layer.fc(
input=hd1,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01))
output = paddle.layer.fc(
input=hd2,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01))
# evaluator
evaluator = paddle.evaluator.auc(input=output, label=label)
# cost layer
cost = paddle.layer.lambda_cost(
input=output, score=label, NDCG_num=6, max_sort_size=-1)
return cost, output
def train_lambda_rank(num_passes):
# listwise input sequence
fill_default_train = functools.partial(
paddle.dataset.mq2007.train, format="listwise")
fill_default_test = functools.partial(
paddle.dataset.mq2007.test, format="listwise")
train_reader = paddle.batch(
paddle.reader.shuffle(fill_default_train, buf_size=100), batch_size=32)
test_reader = paddle.batch(fill_default_test, batch_size=32)
# mq2007 input_dim = 46, dense format
input_dim = 46
cost, output = lambda_rank(input_dim)
parameters = paddle.parameters.create(cost)
trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
# Define end batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
print "Pass %d Batch %d Cost %.9f" % (event.pass_id, event.batch_id,
event.cost)
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
with gzip.open("lambda_rank_params_%d.tar.gz" % (event.pass_id),
"w") as f:
parameters.to_tar(f)
feeding = {"label": 0, "data": 1}
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_passes)
def lambda_rank_infer(pass_id):
"""
lambda_rank model inference interface
parameters:
pass_id : inference model in pass_id
"""
print "Begin to Infer..."
input_dim = 46
output = lambda_rank(input_dim)
parameters = paddle.parameters.Parameters.from_tar(
gzip.open("lambda_rank_params_%d.tar.gz" % (pass_id - 1)))
infer_query_id = None
infer_data = []
infer_data_num = 1
fill_default_test = functools.partial(
paddle.dataset.mq2007.test, format="listwise")
for label, querylist in fill_default_test():
infer_data.append(querylist)
if len(infer_data) == infer_data_num:
break
# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
predicitons = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for i, score in enumerate(predicitons):
print i, score
if __name__ == '__main__':
paddle.init(use_gpu=False, trainer_count=1)
train_lambda_rank(2)
lambda_rank_infer(pass_id=1)
import numpy as np
import unittest
def ndcg(score_list):
"""
measure the ndcg score of order list
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
parameter:
score_list: np.array, shape=(sample_num,1)
e.g. predict rank score list :
>>> scores = [3, 2, 3, 0, 1, 2]
>>> ndcg_score = ndcg(scores)
"""
def dcg(score_list):
n = len(score_list)
cost = .0
for i in range(n):
cost += float(score_list[i]) / np.log((i + 1) + 1)
return cost
dcg_cost = dcg(score_list)
score_ranking = sorted(score_list, reverse=True)
ideal_cost = dcg(score_ranking)
return dcg_cost / ideal_cost
class NdcgTest(unittest.TestCase):
def __init__(self):
pass
def runcase(self):
a = [3, 2, 3, 0, 1, 2]
value = ndcg(a)
self.assertAlmostEqual(0.961, value, places=3)
if __name__ == '__main__':
unittest.main()
import os
import sys
import gzip
import functools
import paddle.v2 as paddle
import numpy as np
from metrics import ndcg
# ranknet is the classic pairwise learning to rank algorithm
# http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
def half_ranknet(name_prefix, input_dim):
"""
parameter in same name will be shared in paddle framework,
these parameters in ranknet can be used in shared state, e.g. left network and right network
shared parameters in detail
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/api.md
"""
# data layer
data = paddle.layer.data(name_prefix + "/data",
paddle.data_type.dense_vector(input_dim))
# hidden layer
hd1 = paddle.layer.fc(
input=data,
size=10,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=0.01, name="hidden_w1"))
# fully connect layer/ output layer
output = paddle.layer.fc(
input=hd1,
size=1,
act=paddle.activation.Linear(),
param_attr=paddle.attr.Param(initial_std=0.01, name="output"))
return output
def ranknet(input_dim):
# label layer
label = paddle.layer.data("label", paddle.data_type.dense_vector(1))
# reuse the parameter in half_ranknet
output_left = half_ranknet("left", input_dim)
output_right = half_ranknet("right", input_dim)
evaluator = paddle.evaluator.auc(input=output_left, label=label)
# rankcost layer
cost = paddle.layer.rank_cost(
name="cost", left=output_left, right=output_right, label=label)
return cost
def train_ranknet(num_passes):
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.mq2007.train, buf_size=100),
batch_size=100)
test_reader = paddle.batch(paddle.dataset.mq2007.test, batch_size=100)
# mq2007 feature_dim = 46, dense format
# fc hidden_dim = 128
feature_dim = 46
cost = ranknet(feature_dim)
parameters = paddle.parameters.create(cost)
trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=paddle.optimizer.Adam(learning_rate=2e-4))
# Define the input data order
feeding = {"label": 0, "left/data": 1, "right/data": 2}
# Define end batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d Batch %d Cost %.9f" % (
event.pass_id, event.batch_id, event.cost)
else:
sys.stdout.write(".")
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
with gzip.open("ranknet_params_%d.tar.gz" % (event.pass_id),
"w") as f:
parameters.to_tar(f)
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_passes)
def ranknet_infer(pass_id):
"""
load the trained model. And predict with plain txt input
"""
print "Begin to Infer..."
feature_dim = 46
# we just need half_ranknet to predict a rank score, which can be used in sort documents
output = half_ranknet("left", feature_dim)
parameters = paddle.parameters.Parameters.from_tar(
gzip.open("ranknet_params_%d.tar.gz" % (pass_id - 1)))
# load data of same query and relevance documents, need ranknet to rank these candidates
infer_query_id = []
infer_data = []
infer_doc_index = []
# convert to mq2007 built-in data format
# <query_id> <relevance_score> <feature_vector>
plain_txt_test = functools.partial(
paddle.dataset.mq2007.test, format="plain_txt")
for query_id, relevance_score, feature_vector in plain_txt_test():
infer_query_id.append(query_id)
infer_data.append(feature_vector)
# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
scores = paddle.infer(
output_layer=output, parameters=parameters, input=infer_data)
for query_id, score in zip(infer_query_id, scores):
print "query_id : ", query_id, " ranknet rank document order : ", score
if __name__ == '__main__':
paddle.init(use_gpu=False, trainer_count=4)
pass_num = 2
train_ranknet(pass_num)
ranknet_infer(pass_id=pass_num - 1)
TBD # 噪声对比估计加速词向量训练
## 背景介绍
在自然语言处理领域中,通常使用特征向量来表示一个单词,但是如何使用准确的词向量来表示语义却是一个难点,详细内容可以在[词向量章节](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.cn.md)中查阅到,原作者使用神经概率语言模型(Neural Probabilistic Language Model, NPLM)来训练词向量,尽管 NPLM 有优异的精度表现,但是相对于传统的 N-gram 统计模型,训练时间还是太漫长了\[[3](#参考文献)\]。常用的优化这个问题算法主要有两个:一个是 hierarchical-sigmoid \[[2](#参考文献)\] 另一个 噪声对比估计(Noise-contrastive estimation, NCE)\[[1](#参考文献)\]。为了克服这个问题本文引入了 NCE 方法。本文将以训练 NPLM 作为例子来讲述如何使用 NCE。
## NCE 概览
NCE 是一种快速对离散分布进行估计的方法,应用到本文中的问题:训练 NPLM 计算开销很大,原因是 softmax 函数计算时需要考虑每个类别的指数项,必须计算字典中的所有单词,而在一般语料集上面字典往往非常大\[[3](#参考文献)\],从而导致整个训练过程十分耗时。与常用的 hierarchical-sigmoid \[[2](#参考文献)\] 方法相比,NCE 不再使用复杂的二叉树来构造目标函数,而是采用相对简单的随机负采样,以大幅提升计算效率。
假设已知具体的上下文 $h$,并且知道这个分布为 $P^h(w)$ ,并将从中抽样出来的数据作为正样例,而从一个噪音分布 $P_n(w)$ 抽样的数据作为负样例。我们可以任意选择合适的噪音分布,默认为无偏的均匀分布。这里我们同时假设噪音样例 k 倍于数据样例,则训练数据被抽中的概率为\[[1](#参考文献)\]
$$P^h(D=1|w,\theta)=\frac { P_\theta^h(w) }{ P^h_\theta(w)+kP_n(w) } =\sigma (\Delta s_\theta(w,h))$$
其中 $\Delta s_\theta(w,h)=s_\theta(w,h)-\log (kP_n(w))$ ,$s_\theta(w,h)$ 表示选择在生成 $w$ 字并处于上下文 $h$ 时的特征向量,整体目标函数的目的就是增大正样本的概率同时降低负样本的概率。目标函数如下[[1](#参考文献)]:
$$
J^h(\theta )=E_{ P_d^h }\left[ \log { P^h(D=1|w,\theta ) } \right] +kE_{ P_n }\left[ \log P^h (D=0|w,\theta ) \right]$$
$$
\\\\\qquad =E_{ P_d^h }\left[ \log { \sigma (\Delta s_\theta(w,h)) } \right] +kE_{ P_n }\left[ \log (1-\sigma (\Delta s_\theta(w,h))) \right]$$
总体上来说,NCE 是通过构造逻辑回归(logistic regression),对正样例和负样例做二分类,对于每一个样本,将自身的预测词 label 作为正样例,同时采样出 $k$ 个其他词 label 作为负样例,从而只需要计算样本在这 $k+1$ 个 label 上的概率。相比原始的 softmax 分类需要计算每个类别的分数,然后归一化得到概率,节约了大量的时间消耗。
## 实验数据
本文采用 Penn Treebank (PTB) 数据集([Tomas Mikolov预处理版本](http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz))来训练语言模型。PaddlePaddle 提供 [paddle.dataset.imikolov](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/dataset/imikolov.py) 接口来方便调用这些数据,如果当前目录没有找到数据它会自动下载并验证文件的完整性。并提供大小为5的滑动窗口对数据做预处理工作,方便后期处理。语料语种为英文,共有42068句训练数据,3761句测试数据。
## 网络结构
N-gram 神经概率语言模型详细网络结构见图1:
<p align="center">
<img src="images/network_conf.png" width = "70%" align="center"/><br/>
图1. 网络配置结构
</p>
可以看到,模型主要分为如下几个部分构成:
1. **输入层**:输入的 ptb 样本由原始的英文单词组成,将每个英文单词转换为字典中的 id 表示,使用唯一的 id 表示可以区分每个单词。
2. **词向量层**:比起原先的 id 表示,词向量表示更能体现词与词之间的语义关系。这里使用可更新的 embedding 矩阵,将原先的 id 表示转换为固定维度的词向量表示。训练完成之后,词语之间的语义相似度可以使用词向量之间的距离来表示,语义越相似,距离越近。
3. **词向量拼接层**:将词向量进行串联,并将词向量首尾相接形成一个长向量。这样可以方便后面全连接层的处理。
4. **全连接隐层**:将上一层获得的长向量输入到一层隐层的神经网络,输出特征向量。全连接的隐层可以增强网络的学习能力。
5. **NCE层**:训练时可以直接实用 PaddlePaddle 提供的 NCE Layer。
## 训练阶段
训练直接运行``` python train.py ```。程序第一次运行会检测用户缓存文件夹中是否包含 ptb 数据集,如果未包含,则自动下载。运行过程中,每1000个 iteration 会打印模型训练信息,主要包含训练损失,每个 pass 会计算测试数据集上的损失,并同时会保存最新的模型快照。在 PaddlePaddle 中有已经实现好的 NCE Layer,一些参数需要自行根据实际场景进行设计,可参考的调参方案如下:
| 参数名 | 参数作用 | 介绍 |
|:------ |:-------| :--------|
| param\_attr / bias\_attr | 用来设置参数名字 | 可以方便后面预测阶段好来实现网络的参数共享,具体内容在下一个章节里会陈述。|
| num\_neg\_samples | 参数负责控制对负样例的采样个数。 | 可以控制正负样本比例,这个值取值区间为 [1, 字典大小-1],负样本个数越多则整个模型的训练速度越慢,模型精度也会越高 |
| neg\_distribution | 控制生成负样例标签的分布,默认是一个均匀分布。 | 可以自行控制负样本采样时各个类别的采样权重,比如希望正样例为“晴天”时,负样例“洪水”在训练时更被着重区分,则可以将“洪水”这个类别的采样权重增加。 |
| act | 表示使用何种激活函数。 | 根据 NCE 的原理,这里应该使用 sigmoid 函数。 |
具体代码实现如下:
```python
cost = paddle.layer.nce(
input=hidden_layer,
label=next_word,
num_classes=dict_size,
param_attr=paddle.attr.Param(name='nce_w'),
bias_attr=paddle.attr.Param(name='nce_b'),
act=paddle.activation.Sigmoid(),
num_neg_samples=25,
neg_distribution=None)
```
## 预测阶段
预测直接运行` python infer.py `,程序首先会加载最新模型,然后按照 batch 大小依次进行预测,并打印预测结果。因为训练和预测计算逻辑不一样,预测阶段需要共享 NCE Layer 中的逻辑回归训练时得到的参数,所以要写一个推断层,推断层的参数为预先训练好的参数。
具体实现推断层的方法:先是通过 `paddle.attr.Param` 方法获取参数值,然后使用 `paddle.layer.trans_full_matrix_projection` 对隐层输出向量 `hidden_layer` 做一个矩阵右乘,PaddlePaddle 会自行在模型中寻找相同参数名的参数并获取。右乘求和后得到类别向量,将类别向量输入 softmax 做一个归一操作,和为1,从而得到最后的类别概率分布。
代码实现如下:
```python
with paddle.layer.mixed(
size=dict_size,
act=paddle.activation.Softmax(),
bias_attr=paddle.attr.Param(name='nce_b')) as prediction:
prediction += paddle.layer.trans_full_matrix_projection(
input=hidden_layer, param_attr=paddle.attr.Param(name='nce_w'))
```
预测的输出形式为:
```
--------------------------
No.68 Input: ' <unk> for possible
Ground Truth Output: <unk>
Predict Output: <unk>
--------------------------
No.69 Input: <unk> for possible <unk>
Ground Truth Output: on
Predict Output: <e>
--------------------------
No.70 Input: for possible <unk> on
Ground Truth Output: the
Predict Output: the
```
每一个短线表示一次的预测,第二行显示第几条测试样例,并给出输入的4个单词,第三行为真实的标签,第四行为预测的标签。
## 参考文献
1. Mnih A, Kavukcuoglu K. [Learning word embeddings efficiently with noise-contrastive estimation](https://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf)[C]//Advances in neural information processing systems. 2013: 2265-2273.
2. Morin, F., & Bengio, Y. (2005, January). [Hierarchical Probabilistic Neural Network Language Model](http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf). In Aistats (Vol. 5, pp. 246-252).
3. Mnih A, Teh Y W. [A Fast and Simple Algorithm for Training Neural Probabilistic Language Models](http://xueshu.baidu.com/s?wd=paperuri%3A%280735b97df93976efb333ac8c266a1eb2%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.org%2Fabs%2F1206.6426&ie=utf-8&sc_us=5770715420073315630)[J]. Computer Science, 2012:1751-1758.
# -*- encoding:utf-8 -*-
import numpy as np
import glob
import gzip
import paddle.v2 as paddle
from nce_conf import network_conf
def main():
paddle.init(use_gpu=False, trainer_count=1)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
prediction_layer = network_conf(
is_train=False,
hidden_size=128,
embedding_size=512,
dict_size=dict_size)
models_list = glob.glob('./models/*')
models_list = sorted(models_list)
with gzip.open(models_list[-1], 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
idx_word_dict = dict((v, k) for k, v in word_dict.items())
batch_size = 64
batch_ins = []
ins_iter = paddle.dataset.imikolov.test(word_dict, 5)
infer_data = []
infer_data_label = []
for item in paddle.dataset.imikolov.test(word_dict, 5)():
infer_data.append((item[:4]))
infer_data_label.append(item[4])
# Choose 100 samples from the test set to show how to infer.
if len(infer_data_label) == 100:
break
feeding = {
'firstw': 0,
'secondw': 1,
'thirdw': 2,
'fourthw': 3,
'fifthw': 4
}
predictions = paddle.infer(
output_layer=prediction_layer,
parameters=parameters,
input=infer_data,
feeding=feeding,
field=['value'])
for i, (prob, data,
label) in enumerate(zip(predictions, infer_data, infer_data_label)):
print '--------------------------'
print "No.%d Input: " % (i+1) + \
idx_word_dict[data[0]] + ' ' + \
idx_word_dict[data[1]] + ' ' + \
idx_word_dict[data[2]] + ' ' + \
idx_word_dict[data[3]]
print 'Ground Truth Output: ' + idx_word_dict[label]
print 'Predict Output: ' + idx_word_dict[prob.argsort(
kind='heapsort', axis=0)[-1]]
print
if __name__ == '__main__':
main()
# -*- encoding:utf-8 -*-
import math
import paddle.v2 as paddle
def network_conf(hidden_size, embedding_size, dict_size, is_train):
first_word = paddle.layer.data(
name="firstw", type=paddle.data_type.integer_value(dict_size))
second_word = paddle.layer.data(
name="secondw", type=paddle.data_type.integer_value(dict_size))
third_word = paddle.layer.data(
name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourth_word = paddle.layer.data(
name="fourthw", type=paddle.data_type.integer_value(dict_size))
next_word = paddle.layer.data(
name="fifthw", type=paddle.data_type.integer_value(dict_size))
embed_param_attr = paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0)
first_embedding = paddle.layer.embedding(
input=first_word, size=embedding_size, param_attr=embed_param_attr)
second_embedding = paddle.layer.embedding(
input=second_word, size=embedding_size, param_attr=embed_param_attr)
third_embedding = paddle.layer.embedding(
input=third_word, size=embedding_size, param_attr=embed_param_attr)
fourth_embedding = paddle.layer.embedding(
input=fourth_word, size=embedding_size, param_attr=embed_param_attr)
context_embedding = paddle.layer.concat(input=[
first_embedding, second_embedding, third_embedding, fourth_embedding
])
hidden_layer = paddle.layer.fc(
input=context_embedding,
size=hidden_size,
act=paddle.activation.Tanh(),
bias_attr=paddle.attr.Param(learning_rate=1),
param_attr=paddle.attr.Param(
initial_std=1. / math.sqrt(embedding_size * 8), learning_rate=1))
if is_train == True:
cost = paddle.layer.nce(
input=hidden_layer,
label=next_word,
num_classes=dict_size,
param_attr=paddle.attr.Param(name='nce_w'),
bias_attr=paddle.attr.Param(name='nce_b'),
act=paddle.activation.Sigmoid(),
num_neg_samples=25,
neg_distribution=None)
return cost
else:
with paddle.layer.mixed(
size=dict_size,
act=paddle.activation.Softmax(),
bias_attr=paddle.attr.Param(name='nce_b')) as prediction:
prediction += paddle.layer.trans_full_matrix_projection(
input=hidden_layer, param_attr=paddle.attr.Param(name='nce_w'))
return prediction
# -*- encoding:utf-8 -*-
import paddle.v2 as paddle
import gzip
from nce_conf import network_conf
def main():
paddle.init(use_gpu=False, trainer_count=1)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
cost = network_conf(
is_train=True, hidden_size=128, embedding_size=512, dict_size=dict_size)
parameters = paddle.parameters.create(cost)
adagrad = paddle.optimizer.Adam(learning_rate=1e-4)
trainer = paddle.trainer.SGD(cost, parameters, adagrad)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1000 == 0:
print "Pass %d, Batch %d, Cost %f" % (
event.pass_id, event.batch_id, event.cost)
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
paddle.batch(paddle.dataset.imikolov.test(word_dict, 5), 64))
print "Test here.. Pass %d, Cost %f" % (event.pass_id, result.cost)
model_name = "./models/model_pass_%05d.tar.gz" % event.pass_id
print "Save model into %s ..." % model_name
with gzip.open(model_name, 'w') as f:
parameters.to_tar(f)
feeding = {
'firstw': 0,
'secondw': 1,
'thirdw': 2,
'fourthw': 3,
'fifthw': 4
}
trainer.train(
paddle.batch(paddle.dataset.imikolov.train(word_dict, 5), 64),
num_passes=1000,
event_handler=event_handler,
feeding=feeding)
if __name__ == '__main__':
main()
...@@ -91,11 +91,11 @@ PaddleBook中[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08 ...@@ -91,11 +91,11 @@ PaddleBook中[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08
```python ```python
#### Decoder #### Decoder
encoder_last = paddle.layer.last_seq(input=encoded_vector) encoder_last = paddle.layer.last_seq(input=encoded_vector)
with paddle.layer.mixed( encoder_last_projected = paddle.layer.mixed(
size=decoder_size, size=decoder_size,
act=paddle.activation.Tanh()) as encoder_last_projected: act=paddle.activation.Tanh(),
encoder_last_projected += paddle.layer.full_matrix_projection( input=paddle.layer.full_matrix_projection(input=encoder_last))
input=encoder_last)
# gru step # gru step
def gru_decoder_without_attention(enc_vec, current_word): def gru_decoder_without_attention(enc_vec, current_word):
''' '''
...@@ -112,10 +112,12 @@ def gru_decoder_without_attention(enc_vec, current_word): ...@@ -112,10 +112,12 @@ def gru_decoder_without_attention(enc_vec, current_word):
context = paddle.layer.last_seq(input=enc_vec) context = paddle.layer.last_seq(input=enc_vec)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs: decoder_inputs = paddle.layer.mixed(
decoder_inputs +=paddle.layer.full_matrix_projection(input=context) size=decoder_size * 3,
decoder_inputs += paddle.layer.full_matrix_projection( input=[
input=current_word) paddle.layer.full_matrix_projection(input=context),
paddle.layer.full_matrix_projection(input=current_word)
])
gru_step = paddle.layer.gru_step( gru_step = paddle.layer.gru_step(
name='gru_decoder', name='gru_decoder',
...@@ -125,24 +127,24 @@ def gru_decoder_without_attention(enc_vec, current_word): ...@@ -125,24 +127,24 @@ def gru_decoder_without_attention(enc_vec, current_word):
output_mem=decoder_mem, output_mem=decoder_mem,
size=decoder_size) size=decoder_size)
with paddle.layer.mixed( out = paddle.layer.mixed(
size=target_dict_dim, size=target_dict_dim,
bias_attr=True, bias_attr=True,
act=paddle.activation.Softmax()) as out: act=paddle.activation.Softmax(),
out += paddle.layer.full_matrix_projection(input=gru_step) input=paddle.layer.full_matrix_projection(input=gru_step))
return out return out
``` ```
在模型训练和测试阶段,解码器的行为有很大的不同: 在模型训练和测试阶段,解码器的行为有很大的不同:
- **训练阶段**:目标翻译结果的词向量`trg_embedding`作为参数传递给单步逻辑`gru_decoder_without_attention()`,函数`recurrent_group()`循环调用单步逻辑执行,最后计算目标翻译与实际解码的差异cost并返回; - **训练阶段**:目标翻译结果的词向量`trg_embedding`作为参数传递给单步逻辑`gru_decoder_without_attention()`,函数`recurrent_group()`循环调用单步逻辑执行,最后计算目标翻译与实际解码的差异cost并返回;
- **测试阶段**:解码器根据最后一个生成的词预测下一个词,`GeneratedInputV2()`自动取出模型预测出的概率最高的$k$个词的词向量传递给单步逻辑,`beam_search()`函数调用单步逻辑函数`gru_decoder_without_attention()`完成柱搜索并作为结果返回。 - **测试阶段**:解码器根据最后一个生成的词预测下一个词,`GeneratedInput()`自动取出模型预测出的概率最高的$k$个词的词向量传递给单步逻辑,`beam_search()`函数调用单步逻辑函数`gru_decoder_without_attention()`完成柱搜索并作为结果返回。
训练和生成的逻辑分别实现在如下的`if-else`条件分支中: 训练和生成的逻辑分别实现在如下的`if-else`条件分支中:
```python ```python
decoder_group_name = "decoder_group" decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True) group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True)
group_inputs = [group_input1] group_inputs = [group_input1]
if not generating: if not generating:
trg_embedding = paddle.layer.embedding( trg_embedding = paddle.layer.embedding(
...@@ -166,7 +168,7 @@ if not generating: ...@@ -166,7 +168,7 @@ if not generating:
return cost return cost
else: else:
trg_embedding = paddle.layer.GeneratedInputV2( trg_embedding = paddle.layer.GeneratedInput(
size=target_dict_dim, size=target_dict_dim,
embedding_name='_target_language_embedding', embedding_name='_target_language_embedding',
embedding_size=word_vector_dim) embedding_size=word_vector_dim)
......
<html>
<head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
<script type="text/javascript" src="../.tools/theme/marked.js">
</script>
<link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
<script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
<link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
<link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
}
</style>
<body>
<div id="context" class="container-fluid markdown-body">
</div>
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# 神经网络机器翻译模型
## 背景介绍
机器翻译利用计算机将源语言转换成目标语言的同义表达,是自然语言处理中重要的研究方向,有着广泛的应用需求,其实现方式也经历了不断地演化。传统机器翻译方法主要基于规则或统计模型,需要人为地指定翻译规则或设计语言特征,效果依赖于人对源语言与目标语言的理解程度。近些年来,深度学习的提出与迅速发展使得特征的自动学习成为可能。深度学习首先在图像识别和语音识别中取得成功,进而在机器翻译等自然语言处理领域中掀起了研究热潮。机器翻译中的深度学习模型直接学习源语言到目标语言的映射,大为减少了学习过程中人的介入,同时显著地提高了翻译质量。本例介绍在PaddlePaddle中如何利用循环神经网络(Recurrent Neural Network, RNN)构建一个端到端(End-to-End)的神经网络机器翻译(Neural Machine Translation, NMT)模型。
## 模型概览
基于 RNN 的神经网络机器翻译模型遵循编码器-解码器结构,其中的编码器和解码器均是一个循环神经网络。将构成编码器和解码器的两个 RNN 沿时间步展开,得到如下的模型结构图:
<p align="center"><img src="images/encoder-decoder.png" width = "90%" align="center"/><br/>图 1. 编码器-解码器框架 </p>
神经机器翻译模型的输入输出可以是字符,也可以是词或者短语。不失一般性,本例以基于词的模型为例说明编码器/解码器的工作机制:
- **编码器**:将源语言句子编码成一个向量,作为解码器的输入。解码器的原始输入是表示词的 `id` 序列 $w = {w_1, w_2, ..., w_T}$,用独热(One-hot)码表示。为了对输入进行降维,同时建立词语之间的语义关联,模型为热独码表示的单词学习一个词嵌入(Word Embedding)表示,也就是常说的词向量,关于词向量的详细介绍请参考 PaddleBook 的[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.cn.md)一章。最后 RNN 单元逐个词地处理输入,得到完整句子的编码向量。
- **解码器**:接受编码器的输入,逐个词地解码出目标语言序列 $u = {u_1, u_2, ..., u_{T'}}$。每个时间步,RNN 单元输出一个隐藏向量,之后经 `Softmax` 归一化计算出下一个目标词的条件概率,即 $P(u_i | w, u_1, u_2, ..., u_{t-1})$。因此,给定输入 $w$,其对应的翻译结果为 $u$ 的概率则为
$$ P(u_1,u_2,...,u_{T'} | w) = \prod_{t=1}^{t={T'}}p(u_t|w, u_1, u_2, u_{t-1})$$
以中文到英文的翻译为例,源语言是中文,目标语言是英文。下面是一句源语言分词后的句子
```
祝愿 祖国 繁荣 昌盛
```
对应的目标语言英文翻译结果为:
```
Wish motherland rich and powerful
```
在预处理阶段,准备源语言与目标语言互译的平行语料数据,并分别构建源语言和目标语言的词典;在训练阶段,用这样成对的平行语料训练模型;在模型测试阶段,输入中文句子,模型自动生成对应的英语翻译,然后将生成结果与标准翻译对比进行评估。在机器翻译领域,BLEU 是最流行的自动评估指标之一。
### RNN 单元
RNN 的原始结构用一个向量来存储隐状态,然而这种结构的 RNN 在训练时容易发生梯度弥散(gradient vanishing),对于长时间的依赖关系难以建模。因此人们对 RNN 单元进行了改进,提出了 LSTM\[[1](#参考文献)] 和 GRU\[[2](#参考文献)],这两种单元以门来控制应该记住的和遗忘的信息,较好地解决了序列数据的长时依赖问题。以本例所用的 GRU 为例,其基本结构如下:
<p align="center">
<img src="images/gru.png" width = "90%" align="center"/><br/>
图 2. GRU 单元
</p>
可以看到除了隐含状态以外,GRU 内部还包含了两个门:更新门(Update Gate)、重置门(Reset Gate)。在每一个时间步,门限和隐状态的更新由图 2 右侧的公式决定。这两个门限决定了状态以何种方式更新。
### 双向编码器
在上述的基本模型中,编码器在顺序处理输入句子序列时,当前时刻的状态只包含了历史输入信息,而没有未来时刻的序列信息。而对于序列建模,未来时刻的上下文同样包含了重要的信息。可以使用如图 3 所示的这种双向编码器来同时获取当前时刻输入的上下文:
<p align="center">
<img src="images/bidirectional-encoder.png" width = "90%" align="center"/><br/>
图 3. 双向编码器结构示意图
</p>
图 3 所示的双向编码器\[[3](#参考文献)\]由两个独立的 RNN 构成,分别从前向和后向对输入序列进行编码,然后将两个 RNN 的输出合并在一起,作为最终的编码输出。
在 PaddlePaddle 中,双向编码器可以很方便地调用相关 APIs 实现:
```python
#### Encoder
src_word_id = paddle.layer.data(
name='source_language_word',
type=paddle.data_type.integer_value_sequence(source_dict_dim))
# source embedding
src_embedding = paddle.layer.embedding(
input=src_word_id, size=word_vector_dim)
# use bidirectional_gru
encoded_vector = paddle.networks.bidirectional_gru(
input=src_embedding,
size=encoder_size,
fwd_act=paddle.activation.Tanh(),
fwd_gate_act=paddle.activation.Sigmoid(),
bwd_act=paddle.activation.Tanh(),
bwd_gate_act=paddle.activation.Sigmoid(),
return_seq=True)
```
### 柱搜索(Beam Search) 算法
训练完成后的生成阶段,模型根据源语言输入,解码生成对应的目标语言翻译结果。解码时,一个直接的方式是取每一步条件概率最大的词,作为当前时刻的输出。但局部最优并不一定能得到全局最优,即这种做法并不能保证最后得到的完整句子出现的概率最大。如果对解的全空间进行搜索,其代价又过大。为了解决这个问题,通常采用柱搜索(Beam Search)算法。柱搜索是一种启发式的图搜索算法,用一个参数 $k$ 控制搜索宽度,其要点如下:
**1**. 在解码的过程中,始终维护 $k$ 个已解码出的子序列;
**2**. 在中间时刻 $t$, 对于 $k$ 个子序列中的每个序列,计算下一个词出现的概率并取概率最大的前 $k$ 个词,组合得到 $k^2$ 个新子序列;
**3**. 取 **2** 中这些组合序列中概率最大的前 $k$ 个以更新原来的子序列;
**4**. 不断迭代下去,直至得到 $k$ 个完整的句子,作为翻译结果的候选。
关于柱搜索的更多介绍,可以参考 PaddleBook 中[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.cn.md)一章中[柱搜索](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.cn.md#柱搜索算法)一节。
### 无注意力机制的解码器
PaddleBook中[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.cn.md)的相关章节中,已介绍了带注意力机制(Attention Mechanism)的 Encoder-Decoder 结构,本例则介绍的是不带注意力机制的 Encoder-Decoder 结构。关于注意力机制,读者可进一步参考 PaddleBook 和参考文献\[[3](#参考文献)]。
对于流行的RNN单元,PaddlePaddle 已有很好的实现均可直接调用。如果希望在 RNN 每一个时间步实现某些自定义操作,可使用 PaddlePaddle 中的`recurrent_layer_group`。首先,自定义单步逻辑函数,再利用函数 `recurrent_group()` 循环调用单步逻辑函数处理整个序列。本例中的无注意力机制的解码器便是使用`recurrent_layer_group`来实现,其中,单步逻辑函数`gru_decoder_without_attention()`相关代码如下:
```python
#### Decoder
encoder_last = paddle.layer.last_seq(input=encoded_vector)
encoder_last_projected = paddle.layer.mixed(
size=decoder_size,
act=paddle.activation.Tanh(),
input=paddle.layer.full_matrix_projection(input=encoder_last))
# gru step
def gru_decoder_without_attention(enc_vec, current_word):
'''
Step function for gru decoder
:param enc_vec: encoded vector of source language
:type enc_vec: layer object
:param current_word: current input of decoder
:type current_word: layer object
'''
decoder_mem = paddle.layer.memory(
name='gru_decoder',
size=decoder_size,
boot_layer=encoder_last_projected)
context = paddle.layer.last_seq(input=enc_vec)
decoder_inputs = paddle.layer.mixed(
size=decoder_size * 3,
input=[
paddle.layer.full_matrix_projection(input=context),
paddle.layer.full_matrix_projection(input=current_word)
])
gru_step = paddle.layer.gru_step(
name='gru_decoder',
act=paddle.activation.Tanh(),
gate_act=paddle.activation.Sigmoid(),
input=decoder_inputs,
output_mem=decoder_mem,
size=decoder_size)
out = paddle.layer.mixed(
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax(),
input=paddle.layer.full_matrix_projection(input=gru_step))
return out
```
在模型训练和测试阶段,解码器的行为有很大的不同:
- **训练阶段**:目标翻译结果的词向量`trg_embedding`作为参数传递给单步逻辑`gru_decoder_without_attention()`,函数`recurrent_group()`循环调用单步逻辑执行,最后计算目标翻译与实际解码的差异cost并返回;
- **测试阶段**:解码器根据最后一个生成的词预测下一个词,`GeneratedInput()`自动取出模型预测出的概率最高的$k$个词的词向量传递给单步逻辑,`beam_search()`函数调用单步逻辑函数`gru_decoder_without_attention()`完成柱搜索并作为结果返回。
训练和生成的逻辑分别实现在如下的`if-else`条件分支中:
```python
decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True)
group_inputs = [group_input1]
if not generating:
trg_embedding = paddle.layer.embedding(
input=paddle.layer.data(
name='target_language_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim)),
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding)
decoder = paddle.layer.recurrent_group(
name=decoder_group_name,
step=gru_decoder_without_attention,
input=group_inputs)
lbl = paddle.layer.data(
name='target_language_next_word',
type=paddle.data_type.integer_value_sequence(target_dict_dim))
cost = paddle.layer.classification_cost(input=decoder, label=lbl)
return cost
else:
trg_embedding = paddle.layer.GeneratedInput(
size=target_dict_dim,
embedding_name='_target_language_embedding',
embedding_size=word_vector_dim)
group_inputs.append(trg_embedding)
beam_gen = paddle.layer.beam_search(
name=decoder_group_name,
step=gru_decoder_without_attention,
input=group_inputs,
bos_id=0,
eos_id=1,
beam_size=beam_size,
max_length=max_length)
return beam_gen
```
## 数据准备
本例所用到的数据来自[WMT14](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/),该数据集是法文到英文互译的平行语料。用[bitexts](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz)作为训练数据,[dev+test data](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz)作为验证与测试数据。在PaddlePaddle中已经封装好了该数据集的读取接口,在首次运行的时候,程序会自动完成下载,用户无需手动完成相关的数据准备。
## 模型的训练与测试
在定义好网络结构后,就可以进行模型训练与测试了。根据用户运行时传递的参数是`--train` 还是 `--generate`,Python 脚本的 `main()` 函数分别调用函数`train()`和`generate()`来完成模型的训练与测试。
### 模型训练
模型训练阶段,函数 `train()` 依次完成了如下的逻辑:
**a) 由网络定义,解析网络结构,初始化模型参数**
```
# initialize model
cost = seq2seq_net(source_dict_dim, target_dict_dim)
parameters = paddle.parameters.create(cost)
```
**b) 设定训练过程中的优化策略、定义训练数据读取 `reader`**
```
# define optimize method and trainer
optimizer = paddle.optimizer.RMSProp(
learning_rate=1e-3,
gradient_clipping_threshold=10.0,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=optimizer)
# define data reader
wmt14_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(source_dict_dim), buf_size=8192),
batch_size=55)
```
**c) 定义事件句柄,打印训练中间结果、保存模型快照**
```
# define event_handler callback
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0 and event.batch_id > 0:
with gzip.open('models/nmt_without_att_params_batch_%d.tar.gz' %
event.batch_id, 'w') as f:
parameters.to_tar(f)
if event.batch_id % 10 == 0:
print "\nPass %d, Batch %d, Cost%f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
```
**d) 开始训练**
```
# start to train
trainer.train(
reader=wmt14_reader, event_handler=event_handler, num_passes=2)
```
启动模型训练的十分简单,只需在命令行窗口中执行
```
python nmt_without_attention_v2.py --train
```
输出样例为
```
Pass 0, Batch 0, Cost 267.674663, {'classification_error_evaluator': 1.0}
.........
Pass 0, Batch 10, Cost 172.892294, {'classification_error_evaluator': 0.953895092010498}
.........
Pass 0, Batch 20, Cost 177.989329, {'classification_error_evaluator': 0.9052488207817078}
.........
Pass 0, Batch 30, Cost 153.633665, {'classification_error_evaluator': 0.8643803596496582}
.........
Pass 0, Batch 40, Cost 168.170543, {'classification_error_evaluator': 0.8348183631896973}
```
### 模型测试
模型测试阶段,函数`generate()`执行了依次如下逻辑:
**a) 加载测试样本**
```
# load data samples for generation
gen_creator = paddle.dataset.wmt14.gen(source_dict_dim)
gen_data = []
for item in gen_creator():
gen_data.append((item[0], ))
```
**b) 初始化模型,执行`infer()`为每个输入样本生成`beam search`的翻译结果**
```
beam_gen = seq2seq_net(source_dict_dim, target_dict_dim, True)
with gzip.open(init_models_path) as f:
parameters = paddle.parameters.Parameters.from_tar(f)
# prob is the prediction probabilities, and id is the prediction word.
beam_result = paddle.infer(
output_layer=beam_gen,
parameters=parameters,
input=gen_data,
field=['prob', 'id'])
```
**c) 加载源语言和目标语言词典,将`id`序列表示的句子转化成原语言并输出结果**
```
# get the dictionary
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(source_dict_dim)
# the delimited element of generated sequences is -1,
# the first element of each generated sequence is the sequence length
seq_list = []
seq = []
for w in beam_result[1]:
if w != -1:
seq.append(w)
else:
seq_list.append(' '.join([trg_dict.get(w) for w in seq[1:]]))
seq = []
prob = beam_result[0]
for i in xrange(len(gen_data)):
print "\n*******************************************************\n"
print "src:", ' '.join([src_dict.get(w) for w in gen_data[i][0]]), "\n"
for j in xrange(beam_size):
print "prob = %f:" % (prob[i][j]), seq_list[i * beam_size + j]
```
模型测试的执行与模型训练类似,只需执行
```
python nmt_without_attention_v2.py --generate
```
则自动为测试数据生成了对应的翻译结果。
设置beam search的宽度为3,输入某个法文句子
```
src: <s> Elles connaissent leur entreprise mieux que personne . <e>
```
其对应的英文翻译结果为
```
prob = -3.754819: They know their business better than anyone . <e>
prob = -4.445528: They know their businesses better than anyone . <e>
prob = -5.026885: They know their business better than anybody . <e>
```
* `prob`表示生成句子的得分,随之其后则是翻译生成的句子;
* `<s>` 表示句子的开始,`<e>`表示一个句子的结束,如果出现了在词典中未包含的词,则用`<unk>`替代。
至此,我们在 PaddlePaddle 上实现了一个初步的机器翻译模型。我们可以看到,PaddlePaddle 提供了灵活丰富的API供大家选择和使用,使得我们能够很方便完成各种复杂网络的配置。机器翻译本身也是个快速发展的领域,各种新方法新思想在不断涌现。在学习完本例后,读者若有兴趣和余力,可基于 PaddlePaddle 平台实现更为复杂、性能更优的机器翻译模型。
## 参考文献
[1] Sutskever I, Vinyals O, Le Q V. [Sequence to Sequence Learning with Neural Networks](https://arxiv.org/abs/1409.3215)[J]. 2014, 4:3104-3112.
[2]Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://www.aclweb.org/anthology/D/D14/D14-1179.pdf)[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1724-1734.
[3] Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[C]. Proceedings of ICLR 2015, 2015
</div>
<!-- You can change the lines below now. -->
<script type="text/javascript">
marked.setOptions({
renderer: new marked.Renderer(),
gfm: true,
breaks: false,
smartypants: true,
highlight: function(code, lang) {
code = code.replace(/&amp;/g, "&")
code = code.replace(/&gt;/g, ">")
code = code.replace(/&lt;/g, "<")
code = code.replace(/&nbsp;/g, " ")
return hljs.highlightAuto(code, [lang]).value;
}
});
document.getElementById("context").innerHTML = marked(
document.getElementById("markdown").innerHTML)
</script>
</body>
...@@ -16,7 +16,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -16,7 +16,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
''' '''
Define the network structure of NMT, including encoder and decoder. Define the network structure of NMT, including encoder and decoder.
:param source_dict_dim: size of source dictionary :param source_dict_dim: size of source dictionary
:type source_dict_dim : int :type source_dict_dim : int
:param target_dict_dim: size of target dictionary :param target_dict_dim: size of target dictionary
:type target_dict_dim: int :type target_dict_dim: int
...@@ -41,11 +41,11 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -41,11 +41,11 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
return_seq=True) return_seq=True)
#### Decoder #### Decoder
encoder_last = paddle.layer.last_seq(input=encoded_vector) encoder_last = paddle.layer.last_seq(input=encoded_vector)
with paddle.layer.mixed( encoder_last_projected = paddle.layer.mixed(
size=decoder_size, size=decoder_size,
act=paddle.activation.Tanh()) as encoder_last_projected: act=paddle.activation.Tanh(),
encoder_last_projected += paddle.layer.full_matrix_projection( input=paddle.layer.full_matrix_projection(input=encoder_last))
input=encoder_last)
# gru step # gru step
def gru_decoder_without_attention(enc_vec, current_word): def gru_decoder_without_attention(enc_vec, current_word):
''' '''
...@@ -63,10 +63,12 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -63,10 +63,12 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
context = paddle.layer.last_seq(input=enc_vec) context = paddle.layer.last_seq(input=enc_vec)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs: decoder_inputs = paddle.layer.mixed(
decoder_inputs += paddle.layer.full_matrix_projection(input=context) size=decoder_size * 3,
decoder_inputs += paddle.layer.full_matrix_projection( input=[
input=current_word) paddle.layer.full_matrix_projection(input=context),
paddle.layer.full_matrix_projection(input=current_word)
])
gru_step = paddle.layer.gru_step( gru_step = paddle.layer.gru_step(
name='gru_decoder', name='gru_decoder',
...@@ -76,15 +78,15 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -76,15 +78,15 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
output_mem=decoder_mem, output_mem=decoder_mem,
size=decoder_size) size=decoder_size)
with paddle.layer.mixed( out = paddle.layer.mixed(
size=target_dict_dim, size=target_dict_dim,
bias_attr=True, bias_attr=True,
act=paddle.activation.Softmax()) as out: act=paddle.activation.Softmax(),
out += paddle.layer.full_matrix_projection(input=gru_step) input=paddle.layer.full_matrix_projection(input=gru_step))
return out return out
decoder_group_name = "decoder_group" decoder_group_name = "decoder_group"
group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True) group_input1 = paddle.layer.StaticInput(input=encoded_vector, is_seq=True)
group_inputs = [group_input1] group_inputs = [group_input1]
if not generating: if not generating:
...@@ -109,7 +111,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -109,7 +111,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
return cost return cost
else: else:
trg_embedding = paddle.layer.GeneratedInputV2( trg_embedding = paddle.layer.GeneratedInput(
size=target_dict_dim, size=target_dict_dim,
embedding_name='_target_language_embedding', embedding_name='_target_language_embedding',
embedding_size=word_vector_dim) embedding_size=word_vector_dim)
...@@ -194,7 +196,7 @@ def generate(source_dict_dim, target_dict_dim, init_models_path): ...@@ -194,7 +196,7 @@ def generate(source_dict_dim, target_dict_dim, init_models_path):
beam_gen = seq2seq_net(source_dict_dim, target_dict_dim, True) beam_gen = seq2seq_net(source_dict_dim, target_dict_dim, True)
with gzip.open(init_models_path) as f: with gzip.open(init_models_path) as f:
parameters = paddle.parameters.Parameters.from_tar(f) parameters = paddle.parameters.Parameters.from_tar(f)
# prob is the prediction probabilities, and id is the prediction word. # prob is the prediction probabilities, and id is the prediction word.
beam_result = paddle.infer( beam_result = paddle.infer(
output_layer=beam_gen, output_layer=beam_gen,
parameters=parameters, parameters=parameters,
...@@ -244,10 +246,10 @@ def main(): ...@@ -244,10 +246,10 @@ def main():
target_language_dict_dim = 30000 target_language_dict_dim = 30000
if generating: if generating:
# shoud pass the right generated model's path here # modify this path to speicify a trained model.
init_models_path = 'models/nmt_without_att_params_batch_1800.tar.gz' init_models_path = 'models/nmt_without_att_params_batch_1800.tar.gz'
if not os.path.exists(init_models_path): if not os.path.exists(init_models_path):
print "Cannot find models for generation" print "trained model cannot be found."
exit(1) exit(1)
generate(source_language_dict_dim, target_language_dict_dim, generate(source_language_dict_dim, target_language_dict_dim,
init_models_path) init_models_path)
......
TBD # 命名实体识别
命名实体识别(Named Entity Recognition,NER)又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,是自然语言处理研究的一个基础问题。NER任务通常包括实体边界识别、确定实体类别两部分,可以将其作为序列标注问题解决。
序列标注可以分为Sequence Classification、Segment Classification和Temporal Classification三类[[1](#参考文献)],本例只考虑Segment Classification,即对输入序列中的每个元素在输出序列中给出对应的标签。对于NER任务,由于需要标识边界,一般采用[BIO方式](http://book.paddlepaddle.org/07.label_semantic_roles/)定义的标签集,如下是一个NER的标注结果示例:
<div align="center">
<img src="images/ner_label_ins.png" width = "80%" align=center /><br>
图1. BIO标注方法示例
</div>
根据序列标注结果可以直接得到实体边界和实体类别。类似的,分词、词性标注、语块识别、[语义角色标注](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等任务同样可通过序列标注来解决。
由于序列标注问题的广泛性,产生了[CRF](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等经典的序列模型,这些模型大多只能使用局部信息或需要人工设计特征。随着深度学习研究的发展,循环神经网络(Recurrent Neural Network,RNN等序列模型能够处理序列元素之间前后关联问题,能够从原始输入文本中学习特征表示,而更加适合序列标注任务,更多相关知识可参考PaddleBook中[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/07.label_semantic_roles/README.cn.md)一课。
使用神经网络模型解决问题的思路通常是:前层网络学习输入的特征表示,网络的最后一层在特征基础上完成最终的任务;对于序列标注问题,通常:使用基于RNN的网络结构学习特征,将学习到的特征接入CRF完成序列标注。实际上是将传统CRF中的线性模型换成了非线性神经网络。沿用CRF的出发点是:CRF使用句子级别的似然概率,能够更好的解决标记偏置问题[[2](#参考文献)]。本例也将基于此思路建立模型。虽然,这里以NER任务作为示例,但所给出的模型可以应用到其他各种序列标注任务中。
## 模型说明
NER任务的输入是"一句话",目标是识别句子中的实体边界及类别,我们参照论文\[[2](#参考文献)\]仅对原始句子进行了一些预处理工作:将每个词转换为小写,并将原词是否大写另作为一个特征,共同作为模型的输入。按照上述处理序列标注问题的思路,可构造如下结构的模型(图2是模型结构示意图):
1. 构造输入
- 输入1是句子序列,采用one-hot方式表示
- 输入2是大写标记序列,标记了句子中每一个词是否是大写,采用one-hot方式表示;
2. one-hot方式的句子序列和大写标记序列通过词表,转换为实向量表示的词向量序列;
3. 将步骤2中的2个词向量序列作为双向RNN的输入,学习输入序列的特征表示,得到新的特性表示序列;
4. CRF以步骤3中模型学习到的特征为输入,以标记序列为监督信号,实现序列标注。
<div align="center">
<img src="images/ner_network.png" width = "40%" align=center /><br>
图2. NER模型的网络结构图
</div>
## 数据说明
在本例中,我们使用CoNLL 2003 NER任务中开放出的数据集。该任务(见[此页面](http://www.clips.uantwerpen.be/conll2003/ner/))只提供了标注工具的下载,原始Reuters数据由于版权原因需另外申请免费下载。在获取原始数据后可参照标注工具中README生成所需数据文件,完成后将包括如下三个数据文件:
| 文件名 | 描述 |
|---|---|
| eng.train | 训练数据 |
| eng.testa | 验证数据,可用来进行参数调优 |
| eng.testb | 评估数据,用来进行最终效果评估 |
为保证本例的完整性,我们从中抽取少量样本放在`data/train``data/test`文件中,作为示例使用;由于版权原因,完整数据还请大家自行获取。这三个文件数据格式如下:
```
U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O
```
其中第一列为原始句子序列(第二、三列分别为词性标签和句法分析中的语块标签,这里暂时不用),第四列为采用了I-TYPE方式表示的NER标签(I-TYPE和BIO方式的主要区别在于语块开始标记的使用上,I-TYPE只有在出现相邻的同类别实体时对后者使用B标记,其他均使用I标记),句子之间以空行分隔。
原始数据需要进行数据预处理才能被PaddlePaddle处理,预处理主要包括下面几个步骤:
1. 从原始数据文件中抽取出句子和标签,构造句子序列和标签序列;
2. 将I-TYPE表示的标签转换为BIO方式表示的标签;
3. 将句子序列中的单词转换为小写,并构造大写标记序列;
4. 依据词典获取词对应的整数索引。
我们将在`conll03.py`中完成以上预处理工作(使用方法将在后文给出):
```python
# import conll03
# conll03.corpus_reader函数完成上面第1步和第2步.
# conll03.reader_creator函数完成上面第3步和第4步.
# conll03.train和conll03.test函数可以获取处理之后的每条样本来供PaddlePaddle训练和测试.
```
预处理完成后,一条训练样本包含3个部分:句子序列、首字母大写标记序列、标注序列。下表是一条训练样本的示例。
| 句子序列 | 大写标记序列 | 标注序列 |
|---|---|---|
| u.n. | 1 | B-ORG |
| official | 0 | O |
| ekeus | 1 | B-PER |
| heads | 0 | O |
| for | 0 | O |
| baghdad | 1 | B-LOC |
| . | 0 | O |
另外,本例依赖的数据还包括:word词典、label词典和预训练的词向量三个文件。label词典已附在`data`目录中,对应于`data/target.txt`;word词典和预训练的词向量来源于[Stanford CS224d](http://cs224d.stanford.edu/)课程作业,请先在该示例所在目录下运行`data/download.sh`脚本进行下载,完成后会将这两个文件一并放入`data`目录下,分别对应`data/vocab.txt``data/wordVectors.txt`
## 使用说明
本示例给出的`conll03.py``ner.py`两个Python脚本分别提供了数据相关和模型相关接口。
### 数据接口使用
`conll03.py`提供了使用CoNLL 2003数据的接口,各主要函数的功能已在数据说明部分进行说明。结合我们提供的接口和文件,可以按照如下步骤使用CoNLL 2003数据:
1. 定义各数据文件、词典文件和词向量文件路径;
2. 调用`conll03.train``conll03.test`接口。
对应如下代码:
```python
import conll03
# 修改以下变量为对应文件路径
train_data_file = 'data/train' # 训练数据文件的路径
test_data_file = 'data/test' # 测试数据文件的路径
vocab_file = 'data/vocab.txt' # 输入句子对应的字典文件的路径
target_file = 'data/target.txt' # 标签对应的字典文件的路径
emb_file = 'data/wordVectors.txt' # 预训练的词向量参数的路径
# 返回训练数据的生成器
train_data_reader = conll03.train(train_data_file, vocab_file, target_file)
# 返回测试数据的生成器
test_data_reader = conll03.test(test_data_file, vocab_file, target_file)
```
### 模型接口使用
`ner.py`提供了以下两个接口分别进行模型训练和预测:
1. `ner_net_train(data_reader, num_passes)`函数实现了模型训练功能,参数`data_reader`表示训练数据的迭代器、`num_passes`表示训练pass的轮数。训练过程中每100个iteration会打印模型训练信息。我们同时在模型配置中加入了chunk evaluator,会输出当前模型对语块识别的Precision、Recall和F1值。chunk evaluator 的详细使用说明请参照[文档](http://www.paddlepaddle.org/develop/doc/api/v2/config/evaluators.html#chunk)。每个pass后会将模型保存为`params_pass_***.tar.gz`的文件(`***`表示pass的id)。
2. `ner_net_infer(data_reader, model_file)`函数实现了预测功能,参数`data_reader`表示测试数据的迭代器、`model_file`表示保存在本地的模型文件,预测过程会按如下格式打印预测结果:
```
U.N. B-ORG
official O
Ekeus B-PER
heads O
for O
Baghdad B-LOC
. O
```
其中第一列为原始句子序列,第二列为BIO方式表示的NER标签。
### 运行程序
本例另在`ner.py`中提供了完整的运行流程,包括数据接口的使用和模型训练、预测。根据上文所述的接口使用方法,使用时需要将`ner.py`中如下的数据设置部分中的各变量修改为对应文件路径:
```python
# 修改以下变量为对应文件路径
train_data_file = 'data/train' # 训练数据文件的路径
test_data_file = 'data/test' # 测试数据文件的路径
vocab_file = 'data/vocab.txt' # 输入句子对应的字典文件的路径
target_file = 'data/target.txt' # 标签对应的字典文件的路径
emb_file = 'data/wordVectors.txt' # 预训练的词向量参数的路径
```
各接口的调用已在`ner.py`中提供:
```python
# 训练数据的生成器
train_data_reader = conll03.train(train_data_file, vocab_file, target_file)
# 测试数据的生成器
test_data_reader = conll03.test(test_data_file, vocab_file, target_file)
# 模型训练
ner_net_train(data_reader=train_data_reader, num_passes=1)
# 预测
ner_net_infer(data_reader=test_data_reader, model_file='params_pass_0.tar.gz')
```
为运行序列标注模型除适当调整`num_passes``model_file`两参数值外,无需再做其它修改(也可根据需要自行调用各接口,如只使用预测功能)。完成修改后,运行本示例只需在`ner.py`所在路径下执行`python ner.py`即可。该示例程序会执行数据读取、模型训练和保存、模型读取及新样本预测等步骤。
### 自定义数据和任务
前文提到本例中的模型可以应用到其他序列标注任务中,这里以词性标注任务为例,给出使用其他数据,并应用到其他任务的操作方法。
假定有如下格式的原始数据:
```
U.N. NNP
official NN
Ekeus NNP
heads VBZ
for IN
Baghdad NNP
. .
```
第一列为原始句子序列,第二列为词性标签序列,两列之间以“\t”分隔,句子之间以空行分隔。
为使用PaddlePaddle和本示例提供的模型,可参照`conll03.py`并根据需要自定义数据接口,如下:
1. 参照`conll03.py`中的`corpus_reader`函数,定义接口返回句子序列和标签序列生成器;
```python
# 实现句子和对应标签的抽取,传入数据文件路径,返回句子和标签序列生成器。
def corpus_reader(filename):
def reader():
sentence = []
labels = []
with open(filename) as f:
for line in f:
if len(line.strip()) == 0:
if len(sentence) > 0:
yield sentence, labels
sentence = []
labels = []
else:
segs = line.strip().split()
sentence.append(segs[0])
labels.append(segs[-1])
f.close()
return reader
```
2. 参照`conll03.py`中的`reader_creator`函数,定义接口返回id化的句子和标签序列生成器。
```python
# 传入corpus_reader返回的生成器、dict类型的word词典和label词典,返回id化的句子和标签序列生成器。
def reader_creator(corpus_reader, word_dict, label_dict):
def reader():
for sentence, labels in corpus_reader():
word_idx = [
word_dict.get(w, UNK_IDX) # 若使用小写单词,请使用w.lower()
for w in sentence
]
# 若使用首字母大写标记,请去掉以下注释符号,并在yield语句的word_idx后加上mark
# mark = [
# 1 if w[0].isupper() else 0
# for w in sentence
# ]
label_idx = [label_dict.get(w) for w in labels]
yield word_idx, label_idx, sentence # 加上sentence方便预测时打印
return reader
```
自定义了数据接口后,要使用本示例中的模型,只需在调用模型训练和预测接口`ner_net_train``ner_net_infer`时传入调用`reader_creator`返回的生成器即可。另外需要注意,这里给出的数据接口定义去掉了`conll03.py`一些预处理(使用原始句子,而非转换成小写单词加上大写标记),`ner.py`中的模型相关接口也需要进行一些调整:
1. 修改网络结构定义接口`ner_net`中大写标记相关内容:
删去`mark`和`mark_embedding`两个变量;
2. 修改模型训练接口`ner_net_train`中大写标记相关内容:
将变量`feeding`定义改为`feeding = {'word': 0, 'target': 1}`;
3. 修改预测接口`ner_net_infer`中大写标记相关内容:
将`test_data.append([item[0], item[1]])`改为`test_data.append([item[0]])`。
如果要继续使用NER中的特征预处理(小写单词、大写标记),请参照上文`reader_creator`代码段给出的注释进行修改,此时`ner.py`中的模型相关接口不必进行修改。
## 参考文献
1. Graves A. [Supervised Sequence Labelling with Recurrent Neural Networks](http://www.cs.toronto.edu/~graves/preprint.pdf)[J]. Studies in Computational Intelligence, 2013, 385.
2. Collobert R, Weston J, Bottou L, et al. [Natural Language Processing (Almost) from Scratch](http://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf)[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537.
"""
Conll03 dataset.
"""
import tarfile
import gzip
import itertools
import collections
import re
import numpy as np
__all__ = ['train', 'test', 'get_dict', 'get_embedding']
UNK_IDX = 0
def canonicalize_digits(word):
if any([c.isalpha() for c in word]): return word
word = re.sub("\d", "DG", word)
if word.startswith("DG"):
word = word.replace(",", "") # remove thousands separator
return word
def canonicalize_word(word, wordset=None, digits=True):
word = word.lower()
if digits:
if (wordset != None) and (word in wordset): return word
word = canonicalize_digits(word) # try to canonicalize numbers
if (wordset == None) or (word in wordset): return word
else: return "UUUNKKK" # unknown token
def load_dict(filename):
d = dict()
with open(filename, 'r') as f:
for i, line in enumerate(f):
d[line.strip()] = i
return d
def get_dict(vocab_file='data/vocab.txt', target_file='data/target.txt'):
"""
Get the word and label dictionary.
"""
word_dict = load_dict(vocab_file)
label_dict = load_dict(target_file)
return word_dict, label_dict
def get_embedding(emb_file='data/wordVectors.txt'):
"""
Get the trained word vector.
"""
return np.loadtxt(emb_file, dtype=float)
def corpus_reader(filename='data/train'):
def reader():
sentence = []
labels = []
with open(filename) as f:
for line in f:
if re.match(r"-DOCSTART-.+", line) or (len(line.strip()) == 0):
if len(sentence) > 0:
yield sentence, labels
sentence = []
labels = []
else:
segs = line.strip().split()
sentence.append(segs[0])
# transform from I-TYPE to BIO schema
if segs[-1] != 'O' and (len(labels) == 0 or
labels[-1][1:] != segs[-1][1:]):
labels.append('B' + segs[-1][1:])
else:
labels.append(segs[-1])
f.close()
return reader
def reader_creator(corpus_reader, word_dict, label_dict):
"""
Conll03 train set creator.
The dataset can be obtained according to http://www.clips.uantwerpen.be/conll2003/ner/.
It returns a reader creator, each sample in the reader includes word id sequence, label id sequence and raw sentence for purpose of print.
:return: Training reader creator
:rtype: callable
"""
def reader():
for sentence, labels in corpus_reader():
word_idx = [
word_dict.get(canonicalize_word(w, word_dict), UNK_IDX)
for w in sentence
]
mark = [1 if w[0].isupper() else 0 for w in sentence]
label_idx = [label_dict.get(w) for w in labels]
yield word_idx, mark, label_idx, sentence
return reader
def train(data_file='data/train',
vocab_file='data/vocab.txt',
target_file='data/target.txt'):
return reader_creator(
corpus_reader(data_file),
word_dict=load_dict(vocab_file),
label_dict=load_dict(target_file))
def test(data_file='data/test',
vocab_file='data/vocab.txt',
target_file='data/target.txt'):
return reader_creator(
corpus_reader(data_file),
word_dict=load_dict(vocab_file),
label_dict=load_dict(target_file))
wget http://cs224d.stanford.edu/assignment2/assignment2.zip
unzip assignment2.zip
cp assignment2_release/data/ner/wordVectors.txt data/
cp assignment2_release/data/ner/vocab.txt data/
rm -rf assignment2.zip assignment2_release
B-LOC
I-LOC
B-MISC
I-MISC
B-ORG
I-ORG
B-PER
I-PER
O
-DOCSTART- -X- O O
CRICKET NNP I-NP O
- : O O
LEICESTERSHIRE NNP I-NP I-ORG
TAKE NNP I-NP O
OVER IN I-PP O
AT NNP I-NP O
TOP NNP I-NP O
AFTER NNP I-NP O
INNINGS NNP I-NP O
VICTORY NN I-NP O
. . O O
LONDON NNP I-NP I-LOC
1996-08-30 CD I-NP O
West NNP I-NP I-MISC
Indian NNP I-NP I-MISC
all-rounder NN I-NP O
Phil NNP I-NP I-PER
Simmons NNP I-NP I-PER
took VBD I-VP O
four CD I-NP O
for IN I-PP O
38 CD I-NP O
on IN I-PP O
Friday NNP I-NP O
as IN I-PP O
Leicestershire NNP I-NP I-ORG
beat VBD I-VP O
Somerset NNP I-NP I-ORG
by IN I-PP O
an DT I-NP O
innings NN I-NP O
and CC O O
39 CD I-NP O
runs NNS I-NP O
in IN I-PP O
two CD I-NP O
days NNS I-NP O
to TO I-VP O
take VB I-VP O
over IN I-PP O
at IN B-PP O
the DT I-NP O
head NN I-NP O
of IN I-PP O
the DT I-NP O
county NN I-NP O
championship NN I-NP O
. . O O
Their PRP$ I-NP O
stay NN I-NP O
on IN I-PP O
top NN I-NP O
, , O O
though RB I-ADVP O
, , O O
may MD I-VP O
be VB I-VP O
short-lived JJ I-ADJP O
as IN I-PP O
title NN I-NP O
rivals NNS I-NP O
Essex NNP I-NP I-ORG
, , O O
Derbyshire NNP I-NP I-ORG
and CC I-NP O
Surrey NNP I-NP I-ORG
all DT O O
closed VBD I-VP O
in RP I-PRT O
on IN I-PP O
victory NN I-NP O
while IN I-SBAR O
Kent NNP I-NP I-ORG
made VBD I-VP O
up RP I-PRT O
for IN I-PP O
lost VBN I-NP O
time NN I-NP O
in IN I-PP O
their PRP$ I-NP O
rain-affected JJ I-NP O
match NN I-NP O
against IN I-PP O
Nottinghamshire NNP I-NP I-ORG
. . O O
After IN I-PP O
bowling VBG I-NP O
Somerset NNP I-NP I-ORG
out RP I-PRT O
for IN I-PP O
83 CD I-NP O
on IN I-PP O
the DT I-NP O
opening NN I-NP O
morning NN I-NP O
at IN I-PP O
Grace NNP I-NP I-LOC
Road NNP I-NP I-LOC
, , O O
Leicestershire NNP I-NP I-ORG
extended VBD I-VP O
their PRP$ I-NP O
first JJ I-NP O
innings NN I-NP O
by IN I-PP O
94 CD I-NP O
runs VBZ I-VP O
before IN I-PP O
being VBG I-VP O
bowled VBD I-VP O
out RP I-PRT O
for IN I-PP O
296 CD I-NP O
with IN I-PP O
England NNP I-NP I-LOC
discard VBP I-VP O
Andy NNP I-NP I-PER
Caddick NNP I-NP I-PER
taking VBG I-VP O
three CD I-NP O
for IN I-PP O
83 CD I-NP O
. . O O
-DOCSTART- -X- O O
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
. . O O
Peter NNP I-NP I-PER
Blackburn NNP I-NP I-PER
BRUSSELS NNP I-NP I-LOC
1996-08-22 CD I-NP O
The DT I-NP O
European NNP I-NP I-ORG
Commission NNP I-NP I-ORG
said VBD I-VP O
on IN I-PP O
Thursday NNP I-NP O
it PRP B-NP O
disagreed VBD I-VP O
with IN I-PP O
German JJ I-NP I-MISC
advice NN I-NP O
to TO I-PP O
consumers NNS I-NP O
to TO I-VP O
shun VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
until IN I-SBAR O
scientists NNS I-NP O
determine VBP I-VP O
whether IN I-SBAR O
mad JJ I-NP O
cow NN I-NP O
disease NN I-NP O
can MD I-VP O
be VB I-VP O
transmitted VBN I-VP O
to TO I-PP O
sheep NN I-NP O
. . O O
Germany NNP I-NP I-LOC
's POS B-NP O
representative NN I-NP O
to TO I-PP O
the DT I-NP O
European NNP I-NP I-ORG
Union NNP I-NP I-ORG
's POS B-NP O
veterinary JJ I-NP O
committee NN I-NP O
Werner NNP I-NP I-PER
Zwingmann NNP I-NP I-PER
said VBD I-VP O
on IN I-PP O
Wednesday NNP I-NP O
consumers NNS I-NP O
should MD I-VP O
buy VB I-VP O
sheepmeat NN I-NP O
from IN I-PP O
countries NNS I-NP O
other JJ I-ADJP O
than IN I-PP O
Britain NNP I-NP I-LOC
until IN I-SBAR O
the DT I-NP O
scientific JJ I-NP O
advice NN I-NP O
was VBD I-VP O
clearer JJR I-ADJP O
. . O O
" " O O
We PRP I-NP O
do VBP I-VP O
n't RB I-VP O
support VB I-VP O
any DT I-NP O
such JJ I-NP O
recommendation NN I-NP O
because IN I-SBAR O
we PRP I-NP O
do VBP I-VP O
n't RB I-VP O
see VB I-VP O
any DT I-NP O
grounds NNS I-NP O
for IN I-PP O
it PRP I-NP O
, , O O
" " O O
the DT I-NP O
Commission NNP I-NP I-ORG
's POS B-NP O
chief JJ I-NP O
spokesman NN I-NP O
Nikolaus NNP I-NP I-PER
van NNP I-NP I-PER
der FW I-NP I-PER
Pas NNP I-NP I-PER
told VBD I-VP O
a DT I-NP O
news NN I-NP O
briefing NN I-NP O
. . O O
He PRP I-NP O
said VBD I-VP O
further JJ I-NP O
scientific JJ I-NP O
study NN I-NP O
was VBD I-VP O
required VBN I-VP O
and CC O O
if IN I-SBAR O
it PRP I-NP O
was VBD I-VP O
found VBN I-VP O
that IN I-SBAR O
action NN I-NP O
was VBD I-VP O
needed VBN I-VP O
it PRP I-NP O
should MD I-VP O
be VB I-VP O
taken VBN I-VP O
by IN I-PP O
the DT I-NP O
European NNP I-NP I-ORG
Union NNP I-NP I-ORG
. . O O
<html>
<head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
<script type="text/javascript" src="../.tools/theme/marked.js">
</script>
<link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
<script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
<link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
<link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
}
</style>
<body>
<div id="context" class="container-fluid markdown-body">
</div>
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# 命名实体识别
命名实体识别(Named Entity Recognition,NER)又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,是自然语言处理研究的一个基础问题。NER任务通常包括实体边界识别、确定实体类别两部分,可以将其作为序列标注问题解决。
序列标注可以分为Sequence Classification、Segment Classification和Temporal Classification三类[[1](#参考文献)],本例只考虑Segment Classification,即对输入序列中的每个元素在输出序列中给出对应的标签。对于NER任务,由于需要标识边界,一般采用[BIO方式](http://book.paddlepaddle.org/07.label_semantic_roles/)定义的标签集,如下是一个NER的标注结果示例:
<div align="center">
<img src="images/ner_label_ins.png" width = "80%" align=center /><br>
图1. BIO标注方法示例
</div>
根据序列标注结果可以直接得到实体边界和实体类别。类似的,分词、词性标注、语块识别、[语义角色标注](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等任务同样可通过序列标注来解决。
由于序列标注问题的广泛性,产生了[CRF](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等经典的序列模型,这些模型大多只能使用局部信息或需要人工设计特征。随着深度学习研究的发展,循环神经网络(Recurrent Neural Network,RNN等序列模型能够处理序列元素之间前后关联问题,能够从原始输入文本中学习特征表示,而更加适合序列标注任务,更多相关知识可参考PaddleBook中[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/07.label_semantic_roles/README.cn.md)一课。
使用神经网络模型解决问题的思路通常是:前层网络学习输入的特征表示,网络的最后一层在特征基础上完成最终的任务;对于序列标注问题,通常:使用基于RNN的网络结构学习特征,将学习到的特征接入CRF完成序列标注。实际上是将传统CRF中的线性模型换成了非线性神经网络。沿用CRF的出发点是:CRF使用句子级别的似然概率,能够更好的解决标记偏置问题[[2](#参考文献)]。本例也将基于此思路建立模型。虽然,这里以NER任务作为示例,但所给出的模型可以应用到其他各种序列标注任务中。
## 模型说明
NER任务的输入是"一句话",目标是识别句子中的实体边界及类别,我们参照论文\[[2](#参考文献)\]仅对原始句子进行了一些预处理工作:将每个词转换为小写,并将原词是否大写另作为一个特征,共同作为模型的输入。按照上述处理序列标注问题的思路,可构造如下结构的模型(图2是模型结构示意图):
1. 构造输入
- 输入1是句子序列,采用one-hot方式表示
- 输入2是大写标记序列,标记了句子中每一个词是否是大写,采用one-hot方式表示;
2. one-hot方式的句子序列和大写标记序列通过词表,转换为实向量表示的词向量序列;
3. 将步骤2中的2个词向量序列作为双向RNN的输入,学习输入序列的特征表示,得到新的特性表示序列;
4. CRF以步骤3中模型学习到的特征为输入,以标记序列为监督信号,实现序列标注。
<div align="center">
<img src="images/ner_network.png" width = "40%" align=center /><br>
图2. NER模型的网络结构图
</div>
## 数据说明
在本例中,我们使用CoNLL 2003 NER任务中开放出的数据集。该任务(见[此页面](http://www.clips.uantwerpen.be/conll2003/ner/))只提供了标注工具的下载,原始Reuters数据由于版权原因需另外申请免费下载。在获取原始数据后可参照标注工具中README生成所需数据文件,完成后将包括如下三个数据文件:
| 文件名 | 描述 |
|---|---|
| eng.train | 训练数据 |
| eng.testa | 验证数据,可用来进行参数调优 |
| eng.testb | 评估数据,用来进行最终效果评估 |
为保证本例的完整性,我们从中抽取少量样本放在`data/train`和`data/test`文件中,作为示例使用;由于版权原因,完整数据还请大家自行获取。这三个文件数据格式如下:
```
U.N. NNP I-NP I-ORG
official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O
```
其中第一列为原始句子序列(第二、三列分别为词性标签和句法分析中的语块标签,这里暂时不用),第四列为采用了I-TYPE方式表示的NER标签(I-TYPE和BIO方式的主要区别在于语块开始标记的使用上,I-TYPE只有在出现相邻的同类别实体时对后者使用B标记,其他均使用I标记),句子之间以空行分隔。
原始数据需要进行数据预处理才能被PaddlePaddle处理,预处理主要包括下面几个步骤:
1. 从原始数据文件中抽取出句子和标签,构造句子序列和标签序列;
2. 将I-TYPE表示的标签转换为BIO方式表示的标签;
3. 将句子序列中的单词转换为小写,并构造大写标记序列;
4. 依据词典获取词对应的整数索引。
我们将在`conll03.py`中完成以上预处理工作(使用方法将在后文给出):
```python
# import conll03
# conll03.corpus_reader函数完成上面第1步和第2步.
# conll03.reader_creator函数完成上面第3步和第4步.
# conll03.train和conll03.test函数可以获取处理之后的每条样本来供PaddlePaddle训练和测试.
```
预处理完成后,一条训练样本包含3个部分:句子序列、首字母大写标记序列、标注序列。下表是一条训练样本的示例。
| 句子序列 | 大写标记序列 | 标注序列 |
|---|---|---|
| u.n. | 1 | B-ORG |
| official | 0 | O |
| ekeus | 1 | B-PER |
| heads | 0 | O |
| for | 0 | O |
| baghdad | 1 | B-LOC |
| . | 0 | O |
另外,本例依赖的数据还包括:word词典、label词典和预训练的词向量三个文件。label词典已附在`data`目录中,对应于`data/target.txt`;word词典和预训练的词向量来源于[Stanford CS224d](http://cs224d.stanford.edu/)课程作业,请先在该示例所在目录下运行`data/download.sh`脚本进行下载,完成后会将这两个文件一并放入`data`目录下,分别对应`data/vocab.txt`和`data/wordVectors.txt`。
## 使用说明
本示例给出的`conll03.py`和`ner.py`两个Python脚本分别提供了数据相关和模型相关接口。
### 数据接口使用
`conll03.py`提供了使用CoNLL 2003数据的接口,各主要函数的功能已在数据说明部分进行说明。结合我们提供的接口和文件,可以按照如下步骤使用CoNLL 2003数据:
1. 定义各数据文件、词典文件和词向量文件路径;
2. 调用`conll03.train`和`conll03.test`接口。
对应如下代码:
```python
import conll03
# 修改以下变量为对应文件路径
train_data_file = 'data/train' # 训练数据文件的路径
test_data_file = 'data/test' # 测试数据文件的路径
vocab_file = 'data/vocab.txt' # 输入句子对应的字典文件的路径
target_file = 'data/target.txt' # 标签对应的字典文件的路径
emb_file = 'data/wordVectors.txt' # 预训练的词向量参数的路径
# 返回训练数据的生成器
train_data_reader = conll03.train(train_data_file, vocab_file, target_file)
# 返回测试数据的生成器
test_data_reader = conll03.test(test_data_file, vocab_file, target_file)
```
### 模型接口使用
`ner.py`提供了以下两个接口分别进行模型训练和预测:
1. `ner_net_train(data_reader, num_passes)`函数实现了模型训练功能,参数`data_reader`表示训练数据的迭代器、`num_passes`表示训练pass的轮数。训练过程中每100个iteration会打印模型训练信息。我们同时在模型配置中加入了chunk evaluator,会输出当前模型对语块识别的Precision、Recall和F1值。chunk evaluator 的详细使用说明请参照[文档](http://www.paddlepaddle.org/develop/doc/api/v2/config/evaluators.html#chunk)。每个pass后会将模型保存为`params_pass_***.tar.gz`的文件(`***`表示pass的id)。
2. `ner_net_infer(data_reader, model_file)`函数实现了预测功能,参数`data_reader`表示测试数据的迭代器、`model_file`表示保存在本地的模型文件,预测过程会按如下格式打印预测结果:
```
U.N. B-ORG
official O
Ekeus B-PER
heads O
for O
Baghdad B-LOC
. O
```
其中第一列为原始句子序列,第二列为BIO方式表示的NER标签。
### 运行程序
本例另在`ner.py`中提供了完整的运行流程,包括数据接口的使用和模型训练、预测。根据上文所述的接口使用方法,使用时需要将`ner.py`中如下的数据设置部分中的各变量修改为对应文件路径:
```python
# 修改以下变量为对应文件路径
train_data_file = 'data/train' # 训练数据文件的路径
test_data_file = 'data/test' # 测试数据文件的路径
vocab_file = 'data/vocab.txt' # 输入句子对应的字典文件的路径
target_file = 'data/target.txt' # 标签对应的字典文件的路径
emb_file = 'data/wordVectors.txt' # 预训练的词向量参数的路径
```
各接口的调用已在`ner.py`中提供:
```python
# 训练数据的生成器
train_data_reader = conll03.train(train_data_file, vocab_file, target_file)
# 测试数据的生成器
test_data_reader = conll03.test(test_data_file, vocab_file, target_file)
# 模型训练
ner_net_train(data_reader=train_data_reader, num_passes=1)
# 预测
ner_net_infer(data_reader=test_data_reader, model_file='params_pass_0.tar.gz')
```
为运行序列标注模型除适当调整`num_passes`和`model_file`两参数值外,无需再做其它修改(也可根据需要自行调用各接口,如只使用预测功能)。完成修改后,运行本示例只需在`ner.py`所在路径下执行`python ner.py`即可。该示例程序会执行数据读取、模型训练和保存、模型读取及新样本预测等步骤。
### 自定义数据和任务
前文提到本例中的模型可以应用到其他序列标注任务中,这里以词性标注任务为例,给出使用其他数据,并应用到其他任务的操作方法。
假定有如下格式的原始数据:
```
U.N. NNP
official NN
Ekeus NNP
heads VBZ
for IN
Baghdad NNP
. .
```
第一列为原始句子序列,第二列为词性标签序列,两列之间以“\t”分隔,句子之间以空行分隔。
为使用PaddlePaddle和本示例提供的模型,可参照`conll03.py`并根据需要自定义数据接口,如下:
1. 参照`conll03.py`中的`corpus_reader`函数,定义接口返回句子序列和标签序列生成器;
```python
# 实现句子和对应标签的抽取,传入数据文件路径,返回句子和标签序列生成器。
def corpus_reader(filename):
def reader():
sentence = []
labels = []
with open(filename) as f:
for line in f:
if len(line.strip()) == 0:
if len(sentence) > 0:
yield sentence, labels
sentence = []
labels = []
else:
segs = line.strip().split()
sentence.append(segs[0])
labels.append(segs[-1])
f.close()
return reader
```
2. 参照`conll03.py`中的`reader_creator`函数,定义接口返回id化的句子和标签序列生成器。
```python
# 传入corpus_reader返回的生成器、dict类型的word词典和label词典,返回id化的句子和标签序列生成器。
def reader_creator(corpus_reader, word_dict, label_dict):
def reader():
for sentence, labels in corpus_reader():
word_idx = [
word_dict.get(w, UNK_IDX) # 若使用小写单词,请使用w.lower()
for w in sentence
]
# 若使用首字母大写标记,请去掉以下注释符号,并在yield语句的word_idx后加上mark
# mark = [
# 1 if w[0].isupper() else 0
# for w in sentence
# ]
label_idx = [label_dict.get(w) for w in labels]
yield word_idx, label_idx, sentence # 加上sentence方便预测时打印
return reader
```
自定义了数据接口后,要使用本示例中的模型,只需在调用模型训练和预测接口`ner_net_train`和`ner_net_infer`时传入调用`reader_creator`返回的生成器即可。另外需要注意,这里给出的数据接口定义去掉了`conll03.py`一些预处理(使用原始句子,而非转换成小写单词加上大写标记),`ner.py`中的模型相关接口也需要进行一些调整:
1. 修改网络结构定义接口`ner_net`中大写标记相关内容:
删去`mark`和`mark_embedding`两个变量;
2. 修改模型训练接口`ner_net_train`中大写标记相关内容:
将变量`feeding`定义改为`feeding = {'word': 0, 'target': 1}`;
3. 修改预测接口`ner_net_infer`中大写标记相关内容:
将`test_data.append([item[0], item[1]])`改为`test_data.append([item[0]])`。
如果要继续使用NER中的特征预处理(小写单词、大写标记),请参照上文`reader_creator`代码段给出的注释进行修改,此时`ner.py`中的模型相关接口不必进行修改。
## 参考文献
1. Graves A. [Supervised Sequence Labelling with Recurrent Neural Networks](http://www.cs.toronto.edu/~graves/preprint.pdf)[J]. Studies in Computational Intelligence, 2013, 385.
2. Collobert R, Weston J, Bottou L, et al. [Natural Language Processing (Almost) from Scratch](http://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf)[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537.
</div>
<!-- You can change the lines below now. -->
<script type="text/javascript">
marked.setOptions({
renderer: new marked.Renderer(),
gfm: true,
breaks: false,
smartypants: true,
highlight: function(code, lang) {
code = code.replace(/&amp;/g, "&")
code = code.replace(/&gt;/g, ">")
code = code.replace(/&lt;/g, "<")
code = code.replace(/&nbsp;/g, " ")
return hljs.highlightAuto(code, [lang]).value;
}
});
document.getElementById("context").innerHTML = marked(
document.getElementById("markdown").innerHTML)
</script>
</body>
import math
import gzip
import paddle.v2 as paddle
import paddle.v2.evaluator as evaluator
import conll03
import itertools
# init dataset
train_data_file = 'data/train'
test_data_file = 'data/test'
vocab_file = 'data/vocab.txt'
target_file = 'data/target.txt'
emb_file = 'data/wordVectors.txt'
train_data_reader = conll03.train(train_data_file, vocab_file, target_file)
test_data_reader = conll03.test(test_data_file, vocab_file, target_file)
word_dict, label_dict = conll03.get_dict(vocab_file, target_file)
word_vector_values = conll03.get_embedding(emb_file)
# init hyper-params
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
mark_dict_len = 2
word_dim = 50
mark_dim = 5
hidden_dim = 300
mix_hidden_lr = 1e-3
default_std = 1 / math.sqrt(hidden_dim) / 3.0
emb_para = paddle.attr.Param(
name='emb', initial_std=math.sqrt(1. / word_dim), is_static=True)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)
def d_type(size):
return paddle.data_type.integer_value_sequence(size)
def ner_net(is_train):
word = paddle.layer.data(name='word', type=d_type(word_dict_len))
mark = paddle.layer.data(name='mark', type=d_type(mark_dict_len))
word_embedding = paddle.layer.mixed(
name='word_embedding',
size=word_dim,
input=paddle.layer.table_projection(input=word, param_attr=emb_para))
mark_embedding = paddle.layer.mixed(
name='mark_embedding',
size=mark_dim,
input=paddle.layer.table_projection(input=mark, param_attr=std_0))
emb_layers = [word_embedding, mark_embedding]
word_caps_vector = paddle.layer.concat(
name='word_caps_vector', input=emb_layers)
hidden_1 = paddle.layer.mixed(
name='hidden1',
size=hidden_dim,
act=paddle.activation.Tanh(),
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=word_caps_vector, param_attr=std_default)
])
rnn_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=0.1)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)
rnn_1_1 = paddle.layer.recurrent(
name='rnn1-1',
input=hidden_1,
act=paddle.activation.Relu(),
bias_attr=std_0,
param_attr=rnn_para_attr)
rnn_1_2 = paddle.layer.recurrent(
name='rnn1-2',
input=hidden_1,
act=paddle.activation.Relu(),
reverse=1,
bias_attr=std_0,
param_attr=rnn_para_attr)
hidden_2_1 = paddle.layer.mixed(
name='hidden2-1',
size=hidden_dim,
bias_attr=std_default,
act=paddle.activation.STanh(),
input=[
paddle.layer.full_matrix_projection(
input=hidden_1, param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=rnn_1_1, param_attr=rnn_para_attr)
])
hidden_2_2 = paddle.layer.mixed(
name='hidden2-2',
size=hidden_dim,
bias_attr=std_default,
act=paddle.activation.STanh(),
input=[
paddle.layer.full_matrix_projection(
input=hidden_1, param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=rnn_1_2, param_attr=rnn_para_attr)
])
rnn_2_1 = paddle.layer.recurrent(
name='rnn2-1',
input=hidden_2_1,
act=paddle.activation.Relu(),
reverse=1,
bias_attr=std_0,
param_attr=rnn_para_attr)
rnn_2_2 = paddle.layer.recurrent(
name='rnn2-2',
input=hidden_2_2,
act=paddle.activation.Relu(),
bias_attr=std_0,
param_attr=rnn_para_attr)
hidden_3 = paddle.layer.mixed(
name='hidden3',
size=hidden_dim,
bias_attr=std_default,
act=paddle.activation.STanh(),
input=[
paddle.layer.full_matrix_projection(
input=hidden_2_1, param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=rnn_2_1,
param_attr=rnn_para_attr), paddle.layer.full_matrix_projection(
input=hidden_2_2, param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=rnn_2_2, param_attr=rnn_para_attr)
])
output = paddle.layer.mixed(
name='output',
size=label_dict_len,
bias_attr=False,
input=[
paddle.layer.full_matrix_projection(
input=hidden_3, param_attr=std_default)
])
if is_train:
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
crf_cost = paddle.layer.crf(
size=label_dict_len,
input=output,
label=target,
param_attr=paddle.attr.Param(
name='crfw',
initial_std=default_std,
learning_rate=mix_hidden_lr))
crf_dec = paddle.layer.crf_decoding(
size=label_dict_len,
input=output,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
return crf_cost, crf_dec, target
else:
predict = paddle.layer.crf_decoding(
size=label_dict_len,
input=output,
param_attr=paddle.attr.Param(name='crfw'))
return predict
def ner_net_train(data_reader=train_data_reader, num_passes=1):
# define network topology
crf_cost, crf_dec, target = ner_net(is_train=True)
evaluator.sum(name='error', input=crf_dec)
evaluator.chunk(
name='ner_chunk',
input=crf_dec,
label=target,
chunk_scheme='IOB',
num_chunk_types=(label_dict_len - 1) / 2)
# create parameters
parameters = paddle.parameters.create(crf_cost)
parameters.set('emb', word_vector_values)
# create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0,
learning_rate=2e-4,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
gradient_clipping_threshold=25,
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000), )
trainer = paddle.trainer.SGD(
cost=crf_cost,
parameters=parameters,
update_equation=optimizer,
extra_layers=crf_dec)
reader = paddle.batch(
paddle.reader.shuffle(data_reader, buf_size=8192), batch_size=64)
feeding = {'word': 0, 'mark': 1, 'target': 2}
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if event.batch_id % 1000 == 0:
result = trainer.test(reader=reader, feeding=feeding)
print "\nTest with Pass %d, Batch %d, %s" % (
event.pass_id, event.batch_id, result.metrics)
if isinstance(event, paddle.event.EndPass):
# save parameters
with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
parameters.to_tar(f)
result = trainer.test(reader=reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
trainer.train(
reader=reader,
event_handler=event_handler,
num_passes=num_passes,
feeding=feeding)
return parameters
def ner_net_infer(data_reader=test_data_reader, model_file='ner_model.tar.gz'):
test_data = []
test_sentences = []
for item in data_reader():
test_data.append([item[0], item[1]])
test_sentences.append(item[-1])
if len(test_data) == 10:
break
predict = ner_net(is_train=False)
lab_ids = paddle.infer(
output_layer=predict,
parameters=paddle.parameters.Parameters.from_tar(gzip.open(model_file)),
input=test_data,
field='id')
flat_data = [word for word in itertools.chain.from_iterable(test_sentences)]
labels_reverse = {}
for (k, v) in label_dict.items():
labels_reverse[v] = k
pre_lab = [labels_reverse[lab_id] for lab_id in lab_ids]
for word, label in zip(flat_data, pre_lab):
print word, label
if __name__ == '__main__':
paddle.init(use_gpu=False, trainer_count=1)
ner_net_train(data_reader=train_data_reader, num_passes=1)
ner_net_infer(
data_reader=test_data_reader, model_file='params_pass_0.tar.gz')
data
*.tar.gz
*.log
*.pyc
# 文本分类 # 文本分类
文本分类是机器学习中的一项常见任务,主要目的是根据一条文本的内容,判断该文本所属的类别。在本例子中,我们利用有标注的语料库训练二分类DNN和CNN模型,完成对输入文本的分类任务。
DNN与CNN模型之间最大的区别在于: 以下是本例目录包含的文件以及对应说明:
```text
.
├── images # 文档中的图片
│   ├── cnn_net.png
│   └── dnn_net.png
├── index.html # 文档
├── infer.py # 预测脚本
├── network_conf.py # 本例中涉及的各种网络结构均定义在此文件中,若进一步修改模型结构,请查看此文件
├── reader.py # 读取数据接口,若使用自定义格式的数据,请查看此文件
├── README.md # 文档
├── run.sh # 训练任务运行脚本,直接运行此脚本,将以默认参数开始训练任务
├── train.py # 训练脚本
└── utils.py # 定义通用的函数,例如:打印日志、解析命令行参数、构建字典、加载字典等
```
- DNN不属于序列模型,大多使用基本的全连接结构,只能接受固定维度的特征向量作为输入。 ## 简介
文本分类任务根据给定一条文本的内容,判断该文本所属的类别,是自然语言处理领域的一项重要的基础任务。[PaddleBook](https://github.com/PaddlePaddle/book) 中的[情感分类](https://github.com/PaddlePaddle/book/blob/develop/06.understand_sentiment/README.cn.md)一课,正是一个典型的文本分类任务,任务流程如下:
- CNN属于序列模型,能够提取一个局部区域之内的特征,能够处理变长的序列输入。 1. 收集电影评论网站的用户评论数据。
2. 清洗,标记。
3. 模型设计。
4. 模型学习效果评估。
举例来说,情感分类是一项常见的文本分类任务,在情感分类中,我们希望训练一个模型来判断句子中表现出的情感是正向还是负向。例如,"The apple is not bad",其中的"not bad"是决定这个句子情感的关键 训练好的分类器能够**自动判断**新出现的用户评论的情感是正面还是负面,在舆情监控、营销策划、产品品牌价值评估等任务中,能够起到重要作用。以上过程也是我们去完成一个新的文本分类任务需要遵循的常规流程。可以看到,深度学习方法的巨大优势体现在:**免除复杂的特征的设计,只需要对原始文本进行基础的清理、标注即可**
- 对于DNN模型来说,只能知道句子中有一个"not"和一个"bad",但两者之间的顺序关系在输入时已经丢失,网络不再有机会学习序列之间的顺序信息。 [PaddleBook](https://github.com/PaddlePaddle/book) 中的[情感分类](https://github.com/PaddlePaddle/book/blob/develop/06.understand_sentiment/README.cn.md)介绍了一个较为复杂的栈式双向 LSTM 模型,循环神经网络在一些需要理解语言语义的复杂任务中有着明显的优势,但计算量大,通常对调参技巧也有着更高的要求。在对计算时间有一定限制的任务中,也会考虑其它模型。除了计算时间的考量,更重要的一点:**模型选择往往是机器学习任务成功的基础**。机器学习任务的目标始终是提高泛化能力,也就是对未知的新的样本预测的能力:
- CNN模型接受文本序列作为输入,保留了"not bad"之间的顺序信息。因此,在大多数文本分类任务上,CNN模型的表现要好于DNN。 1. 简单模型拟合能力不足,无法精确拟合训练样本,更加无法期待模型能够准确地预测没有出现在训练样本集中的未知样本,这就是**欠拟合**问题。
2. 然而,过于复杂的模型轻松“记忆”了训练样本集中的每一个样本,但对于没有出现在训练样本集中的未知样本却毫无识别能力,这就是**过拟合**问题。
## 实验数据 "No Free Lunch (NFL)" 是机器学习任务基本原则之一:没有任何一种模型是天生优于其他模型的。模型的设计和选择建立在了解不同模型特性的基础之上,但同时也是一个多次实验评估的过程。在本例中,我们继续向大家介绍几种最常用的文本分类模型,它们的能力和复杂程度不同,帮助大家对比学习这些模型学习效果之间的差异,针对不同的场景选择使用。
本例子的实验在[IMDB数据集](http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz)上进行。IMDB数据集包含了来自IMDB(互联网电影数据库)网站的5万条电影影评,并被标注为正面/负面两种评价。数据集被划分为train和test两部分,各2.5万条数据,正负样本的比例基本为1:1。样本直接以英文原文的形式表示。
## DNN模型 ## 模型详解
**DNN的模型结构入下图所示:** `network_conf.py` 中包括以下模型:
<p align="center"> 1. `fc_net`: DNN 模型,是一个非序列模型。使用基本的全连接结构。
<img src="images/dnn_net.png" width = "90%" align="center"/><br/> 2. `convolution_net`:浅层 CNN 模型,是一个基础的序列模型,能够处理变长的序列输入,提取一个局部区域之内的特征。
图1. DNN文本分类模型
</p>
**可以看到,模型主要分为如下几个部分:** 我们以情感分类任务为例,简单说明序列模型和非序列模型之间的差异。情感分类是一项常见的文本分类任务,模型自动判断文本中表现出的情感是正向还是负向。以句子 "The apple is not bad" 为例,"not bad" 是决定这个句子情感的关键:
- **词向量层**:IMDB的样本由原始的英文单词组成,为了更好地表示不同词之间语义上的关系,首先将英文单词转化为固定维度的向量。训练完成后,词与词语义上的相似程度可以用它们的词向量之间的距离来表示,语义上越相似,距离越近。关于词向量的更多信息请参考PaddleBook中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。 - 对于 DNN 模型来说,只知道句子中有一个 "not" 和一个 "bad",两者之间的顺序关系在输入网络时已丢失,网络不再有机会学习序列之间的顺序信息。
- CNN 模型接受文本序列作为输入,保留了 "not bad" 之间的顺序信息。
- **最大池化层**:最大池化在时间序列上进行,池化过程消除了不同语料样本在单词数量多少上的差异,并提炼出词向量中每一下标位置上的最大值。经过池化后,词向量层输出的向量序列被转化为一条固定维度的向量。例如,假设最大池化前向量的序列为`[[2,3,5],[7,3,6],[1,4,0]]`,则最大池化的结果为:`[7,4,6]` 两者各自的一些特点简单总结如下:
- **全连接隐层**:经过最大池化后的向量被送入两个连续的隐层,隐层之间为全连接结构。
1. DNN 的计算量可以远低于 CNN / RNN 模型,在对响应时间有要求的任务中具有优势。
2. DNN 刻画的往往是频繁词特征,潜在会受到分词错误的影响,但对一些依赖关键词特征也能做的不错的任务:如 Spam 短信检测,依然是一个有效的模型。
3. 在大多数需要一定语义理解(例如,借助上下文消除语义中的歧义)的文本分类任务上,以 CNN / RNN 为代表的序列模型的效果往往好于 DNN 模型。
- **输出层**:输出层的神经元数量和样本的类别数一致,例如在二分类问题中,输出层会有2个神经元。通过Softmax激活函数,输出结果是一个归一化的概率分布,和为1,因此第$i$个神经元的输出就可以认为是样本属于第$i$类的预测概率。 ### 1. DNN 模型
**通过PaddlePaddle实现该DNN结构的代码如下:** **DNN 模型结构入下图所示:**
```python
import paddle.v2 as paddle
def fc_net(dict_dim, class_dim=2, emb_dim=28):
"""
dnn network definition
:param dict_dim: size of word dictionary
:type input_dim: int
:params class_dim: number of instance class
:type class_dim: int
:params emb_dim: embedding vector dimension
:type emb_dim: int
"""
# input layers
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(dict_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))
# embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim)
# max pooling
seq_pool = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
# two hidden layers
hd_layer_size = [28, 8]
hd_layer_init_std = [1.0 / math.sqrt(s) for s in hd_layer_size]
hd1 = paddle.layer.fc(
input=seq_pool,
size=hd_layer_size[0],
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=hd_layer_init_std[0]))
hd2 = paddle.layer.fc(
input=hd1,
size=hd_layer_size[1],
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=hd_layer_init_std[1]))
# output layer
output = paddle.layer.fc(
input=hd2,
size=class_dim,
act=paddle.activation.Softmax(),
param_attr=paddle.attr.Param(initial_std=1.0 / math.sqrt(class_dim)))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost, output, lbl
```
该DNN模型默认对输入的语料进行二分类(`class_dim=2`),embedding的词向量维度默认为28(`emd_dim=28`),两个隐层均使用Tanh激活函数(`act=paddle.activation.Tanh()`)。
需要注意的是,该模型的输入数据为整数序列,而不是原始的英文单词序列。事实上,为了处理方便我们一般会事先将单词根据词频顺序进行id化,即将单词用整数替代, 也就是单词在字典中的序号。这一步一般在DNN模型之外完成。
## CNN模型
**CNN的模型结构如下图所示:**
<p align="center"> <p align="center">
<img src="images/cnn_net.png" width = "90%" align="center"/><br/> <img src="images/dnn_net.png" width = "90%" align="center"/><br/>
2. CNN文本分类模型 1. 本例中的 DNN 文本分类模型
</p> </p>
**可以看到,模型主要分为如下几个部分:** 在 PaddlePaddle 实现该 DNN 结构的代码见 `network_conf.py` 中的 `fc_net` 函数,模型主要分为如下几个部分:
- **词向量层**与DNN中词向量层的作用一样,将英文单词转化为固定维度的向量,利用向量之间的距离来表示词之间的语义相关程度。如图2中所示,将得到的词向量定义为行向量,再将语料中所有的单词产生的行向量拼接在一起组成矩阵。假设词向量维度为5,语料“The cat sat on the read mat”包含7个单词,那么得到的矩阵维度为7*5。关于词向量的更多信息请参考PaddleBook中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。 - **词向量层**为了更好地表示不同词之间语义上的关系,首先将词语转化为固定维度的向量。训练完成后,词与词语义上的相似程度可以用它们的词向量之间的距离来表示,语义上越相似,距离越近。关于词向量的更多信息请参考PaddleBook中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。
- **卷积层**: 文本分类中的卷积在时间序列上进行,即卷积核的宽度和词向量层产出的矩阵一致,卷积沿着矩阵的高度方向进行。卷积后得到的结果被称为“特征图”(feature map)。假设卷积核的高度为$h$,矩阵的高度为$N$,卷积的步长为1,则得到的特征图为一个高度为$N+1-h$的向量。可以同时使用多个不同高度的卷积核,得到多个特征图。 - **最大池化层**:最大池化在时间序列上进行,池化过程消除了不同语料样本在单词数量多少上的差异,并提炼出词向量中每一下标位置上的最大值。经过池化后,词向量层输出的向量序列被转化为一条固定维度的向量。例如,假设最大池化前向量的序列为`[[2,3,5],[7,3,6],[1,4,0]]`,则最大池化的结果为:`[7,4,6]`
- **最大池化层**: 对卷积得到的各个特征图分别进行最大池化操作。由于特征图本身已经是向量,因此这里的最大池化实际上就是简单地选出各个向量中的最大元素。各个最大元素又被拼接在一起,组成新的向量,显然,该向量的维度等于特征图的数量,也就是卷积核的数量。举例来说,假设我们使用了四个不同的卷积核,卷积产生的特征图分别为:`[2,3,5]``[8,2,1]``[5,7,7,6]``[4,5,1,8]`,由于卷积核的高度不同,因此产生的特征图尺寸也有所差异。分别在这四个特征图上进行最大池化,结果为:`[5]``[8]``[7]``[8]`,最后将池化结果拼接在一起,得到`[5,8,7,8]`
- **全连接与输出层**:将最大池化的结果通过全连接层输出,与DNN模型一样,最后输出层的神经元个数与样本的类别数量一致,且输出之和为1 - **全连接隐层**:经过最大池化后的向量被送入两个连续的隐层,隐层之间为全连接结构
**通过PaddlePaddle实现该CNN结构的代码如下:** - **输出层**:输出层的神经元数量和样本的类别数一致,例如在二分类问题中,输出层会有2个神经元。通过Softmax激活函数,输出结果是一个归一化的概率分布,和为1,因此第$i$个神经元的输出就可以认为是样本属于第$i$类的预测概率。
```python 该 DNN 模型默认对输入的语料进行二分类(`class_dim=2`),embedding(词向量)维度默认为28(`emd_dim=28`),两个隐层均使用Tanh激活函数(`act=paddle.activation.Tanh()`)。需要注意的是,该模型的输入数据为整数序列,而不是原始的单词序列。事实上,为了处理方便,我们一般会事先将单词根据词频顺序进行 id 化,即将词语转化成在字典中的序号。
import paddle.v2 as paddle
def convolution_net(dict_dim, class_dim=2, emb_dim=28, hid_dim=128): ### 2. CNN 模型
"""
cnn network definition
:param dict_dim: size of word dictionary **CNN 模型结构如下图所示:**
:type input_dim: int
:params class_dim: number of instance class
:type class_dim: int
:params emb_dim: embedding vector dimension
:type emb_dim: int
:params hid_dim: number of same size convolution kernels
:type hid_dim: int
"""
# input layers <p align="center">
data = paddle.layer.data("word", <img src="images/cnn_net.png" width = "90%" align="center"/><br/>
paddle.data_type.integer_value_sequence(dict_dim)) 图2. 本例中的 CNN 文本分类模型
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2)) </p>
#embedding layer 通过 PaddlePaddle 实现该 CNN 结构的代码见 `network_conf.py` 中的 `convolution_net` 函数,模型主要分为如下几个部分:
emb = paddle.layer.embedding(input=data, size=emb_dim)
# convolution layers with max pooling - **词向量层**:与 DNN 中词向量层的作用一样,将词语转化为固定维度的向量,利用向量之间的距离来表示词之间的语义相关程度。如图2所示,将得到的词向量定义为行向量,再将语料中所有的单词产生的行向量拼接在一起组成矩阵。假设词向量维度为5,句子 “The cat sat on the read mat” 含 7 个词语,那么得到的矩阵维度为 7*5。关于词向量的更多信息请参考 PaddleBook 中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。
conv_3 = paddle.networks.sequence_conv_pool(
input=emb, context_len=3, hidden_size=hid_dim)
conv_4 = paddle.networks.sequence_conv_pool(
input=emb, context_len=4, hidden_size=hid_dim)
# fc and output layer - **卷积层**: 文本分类中的卷积在时间序列上进行,即卷积核的宽度和词向量层产出的矩阵一致,卷积沿着矩阵的高度方向进行。卷积后得到的结果被称为“特征图”(feature map)。假设卷积核的高度为 $h$,矩阵的高度为 $N$,卷积的步长为 1,则得到的特征图为一个高度为 $N+1-h$ 的向量。可以同时使用多个不同高度的卷积核,得到多个特征图。
output = paddle.layer.fc(
input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=output, label=lbl) - **最大池化层**: 对卷积得到的各个特征图分别进行最大池化操作。由于特征图本身已经是向量,因此这里的最大池化实际上就是简单地选出各个向量中的最大元素。各个最大元素又被拼接在一起,组成新的向量,显然,该向量的维度等于特征图的数量,也就是卷积核的数量。举例来说,假设我们使用了四个不同的卷积核,卷积产生的特征图分别为:`[2,3,5]``[8,2,1]``[5,7,7,6]``[4,5,1,8]`,由于卷积核的高度不同,因此产生的特征图尺寸也有所差异。分别在这四个特征图上进行最大池化,结果为:`[5]``[8]``[7]``[8]`,最后将池化结果拼接在一起,得到`[5,8,7,8]`
return cost, output, lbl - **全连接与输出层**:将最大池化的结果通过全连接层输出,与 DNN 模型一样,最后输出层的神经元个数与样本的类别数量一致,且输出之和为 1。
```
该CNN网络的输入数据类型和前面介绍过的DNN一致。`paddle.networks.sequence_conv_pool`为PaddlePaddle中已经封装好的带有池化的文本序列卷积模块,该模块的`context_len`参数用于指定卷积核在同一时间覆盖的文本长度,即图2中的卷积核的高度;`hidden_size`用于指定该类型的卷积核的数量。可以看到,上述代码定义的结构中使用了128个大小为3的卷积核和128个大小为4的卷积核,这些卷积的结果经过最大池化和结果拼接后产生一个256维的向量,向量经过一个全连接层输出最终预测结果。 CNN 网络的输入数据类型和 DNN 一致。PaddlePaddle 中已经封装好的带有池化的文本序列卷积模块:`paddle.networks.sequence_conv_pool`,可直接调用。该模块的 `context_len` 参数用于指定卷积核在同一时间覆盖的文本长度,即图 2 中的卷积核的高度。`hidden_size` 用于指定该类型的卷积核的数量。本例代码默认使用了 128 个大小为 3 的卷积核和 128 个大小为 4 的卷积核,这些卷积的结果经过最大池化和结果拼接后产生一个 256 维的向量,向量经过一个全连接层输出最终的预测结果。
## 自定义数据 ## 使用 PaddlePaddle 内置数据运行
本样例中的代码通过`Paddle.dataset.imdb.train`接口使用了PaddlePaddle自带的样例数据,在第一次运行代码时,PaddlePaddle会自动下载并缓存所需的数据。如果希望使用自己的数据进行训练,需要自行编写数据读取接口。
编写数据读取接口的关键在于实现一个Python生成器,生成器负责从原始输入文本中解析出一条训练样本,并组合成适当的数据形式传送给网络中的data layer。例如在本样例中,data layer需要的数据类型为`paddle.data_type.integer_value_sequence`,本质上是一个Python list。因此我们的生成器需要完成:从文件中读取数据, 以及转换成适当形式的Python list,这两件事情。 ### 如何训练
假设原始数据的格式为 在终端中执行 `sh run.sh` 以下命令, 将以 PaddlePaddle 内置的情感分类数据集:`paddle.dataset.imdb` 直接运行本例,会看到如下输入
```text
Pass 0, Batch 0, Cost 0.696031, {'__auc_evaluator_0__': 0.47360000014305115, 'classification_error_evaluator': 0.5}
Pass 0, Batch 100, Cost 0.544438, {'__auc_evaluator_0__': 0.839249312877655, 'classification_error_evaluator': 0.30000001192092896}
Pass 0, Batch 200, Cost 0.406581, {'__auc_evaluator_0__': 0.9030032753944397, 'classification_error_evaluator': 0.2199999988079071}
Test at Pass 0, {'__auc_evaluator_0__': 0.9289745092391968, 'classification_error_evaluator': 0.14927999675273895}
``` ```
PaddlePaddle is good 1 日志每隔 100 个 batch 输出一次,输出信息包括:(1)Pass 序号;(2)Batch 序号;(3)依次输出当前 Batch 上评估指标的评估结果。评估指标在配置网络拓扑结构时指定,在上面的输出中,输出了训练样本集之的 AUC 以及错误率指标。
What a terrible weather 0
```
每一行为一条样本,样本包括了原始语料和标签,语料内部单词以空格分隔,语料和标签之间用`\t`分隔。对以上格式的数据,可以使用如下自定义的数据读取接口为PaddlePaddle返回训练数据:
```python
def encode_word(word, word_dict):
"""
map word to id
:param word: the word to be mapped
:type word: str
:param word_dict: word dictionary
:type word_dict: Python dict
"""
if word_dict.has_key(word):
return word_dict[word]
else:
return word_dict['<unk>']
def data_reader(file_name, word_dict):
"""
Reader interface for training data
:param file_name: data file name
:type file_name: str
:param word_dict: word dictionary
:type word_dict: Python dict
"""
def reader():
with open(file_name, "r") as f:
for line in f:
ins, label = line.strip('\n').split('\t')
ins_data = [int(encode_word(w, word_dict)) for w in ins.split(' ')]
yield ins_data, int(label)
return reader
```
`word_dict`是字典,用来将原始的单词字符串转化为在字典中的序号。可以用`data_reader`替换原先代码中的`Paddle.dataset.imdb.train`接口用以提供自定义的训练数据。 ### 如何预测
## 运行与输出 训练结束后模型默认存储在当前工作目录下,在终端中执行 `python infer.py` ,预测脚本会加载训练好的模型进行预测。
本部分以上文介绍的DNN网络为例,介绍如何利用样例中的`text_classification_dnn.py`脚本进行DNN网络的训练和对新样本的预测。 - 默认加载使用 `paddle.data.imdb.train` 训练一个 Pass 产出的 DNN 模型对 `paddle.dataset.imdb.test` 进行测试
`text_classification_dnn.py`中的代码分为四部分: 会看到如下输出:
- **fc_net函数**:定义dnn网络结构,上文已经有说明。
- **train\_dnn\_model函数**:模型训练函数。定义优化方式、训练输出等内容,并组织训练流程。每完成一个pass的训练,程序都会将当前的模型参数保存在硬盘上,文件名为:`dnn_params_pass***.tar.gz`,其中`***`表示pass的id,从0开始计数。本函数接受一个整数类型的参数,表示训练pass的总轮数。
- **dnn_infer函数**:载入已有模型并对新样本进行预测。函数开始运行后会从当前路径下寻找并读取指定名称的参数文件,加载其中的模型参数,并对test数据集中的样本进行预测。
- **main函数**:主函数
要运行本样例,直接在`text_classification_dnn.py`所在路径下执行`python text_classification_dnn.py`即可,样例会自动依次执行数据集下载、数据读取、模型训练和保存、模型读取、新样本预测等步骤。
预测的输出形式为:
```text
positive 0.9275 0.0725 previous reviewer <unk> <unk> gave a much better <unk> of the films plot details than i could what i recall mostly is that it was just so beautiful in every sense emotionally visually <unk> just <unk> br if you like movies that are wonderful to look at and also have emotional content to which that beauty is relevant i think you will be glad to have seen this extraordinary and unusual work of <unk> br on a scale of 1 to 10 id give it about an <unk> the only reason i shy away from 9 is that it is a mood piece if you are in the mood for a really artistic very romantic film then its a 10 i definitely think its a mustsee but none of us can be in that mood all the time so overall <unk>
negative 0.0300 0.9700 i love scifi and am willing to put up with a lot scifi <unk> are usually <unk> <unk> and <unk> i tried to like this i really did but it is to good tv scifi as <unk> 5 is to star trek the original silly <unk> cheap cardboard sets stilted dialogues cg that doesnt match the background and painfully onedimensional characters cannot be overcome with a scifi setting im sure there are those of you out there who think <unk> 5 is good scifi tv its not its clichéd and <unk> while us viewers might like emotion and character development scifi is a genre that does not take itself seriously <unk> star trek it may treat important issues yet not as a serious philosophy its really difficult to care about the characters here as they are not simply <unk> just missing a <unk> of life their actions and reactions are wooden and predictable often painful to watch the makers of earth know its rubbish as they have to always say gene <unk> earth otherwise people would not continue watching <unk> <unk> must be turning in their <unk> as this dull cheap poorly edited watching it without <unk> breaks really brings this home <unk> <unk> of a show <unk> into space spoiler so kill off a main character and then bring him back as another actor <unk> <unk> all over again
``` ```
[ 0.99892634 0.00107362] 0
[ 0.00107638 0.9989236 ] 1
[ 0.98185927 0.01814074] 0
[ 0.31667888 0.68332112] 1
[ 0.98853314 0.01146684] 0
```
每一行表示一条样本的预测结果。前两列表示该样本属于0、1这两个类别的预测概率,最后一列表示样本的实际label。
在运行CNN模型的`text_classification_cnn.py`脚本中,网络模型定义在`convolution_net`函数中,模型训练函数名为`train_cnn_model`,预测函数名为`cnn_infer`。其他用法和`text_classification_dnn.py`是一致的。 输出日志每一行是对一条样本预测的结果,以 `\t` 分隔,共 3 列,分别是:(1)预测类别标签;(2)样本分别属于每一类的概率,内部以空格分隔;(3)输入文本。
## 使用自定义数据训练和预测
### 如何训练
1. 数据组织
假设有如下格式的训练数据:每一行为一条样本,以 `\t` 分隔,第一列是类别标签,第二列是输入文本的内容,文本内容中的词语以空格分隔。以下是两条示例数据:
```
positive PaddlePaddle is good
negative What a terrible weather
```
2. 编写数据读取接口
自定义数据读取接口只需编写一个 Python 生成器实现**从原始输入文本中解析一条训练样本**的逻辑。以下代码片段实现了读取原始数据返回类型为: `paddle.data_type.integer_value_sequence`(词语在字典的序号)和 `paddle.data_type.integer_value`(类别标签)的 2 个输入给网络中定义的 2 个 `data_layer` 的功能。
```python
def train_reader(data_dir, word_dict, label_dict):
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 0
lbl_col = 1
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, label_dict[line_split[lbl_col]]
return reader
```
- 关于 PaddlePaddle 中 `data_layer` 接受输入数据的类型,以及数据读取接口对应该返回数据的格式,请参考 [input-types](http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/ui/data_provider/pydataprovider2.html#input-types) 一节。
- 以上代码片段详见本例目录下的 `reader.py` 脚本,`reader.py` 同时提供了读取测试数据的全部代码。
接下来,只需要将数据读取函数 `train_reader` 作为参数传递给 `train.py` 脚本中的 `paddle.batch` 接口即可使用自定义数据接口读取数据,调用方式如下:
```python
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
buf_size=1000),
batch_size=batch_size)
```
3. 修改命令行参数
- 如果将数据组织成示例数据的同样的格式,只需在 `run.sh` 脚本中修改 `train.py` 启动参数,指定 `train_data_dir` 参数,可以直接运行本例,无需修改数据读取接口 `reader.py`。
- 执行 `python train.py --help` 可以获取`train.py` 脚本各项启动参数的详细说明,主要参数如下:
- `nn_type`:选择要使用的模型,目前支持两种:“dnn” 或者 “cnn”。
- `train_data_dir`:指定训练数据所在的文件夹,使用自定义数据训练,必须指定此参数,否则使用`paddle.dataset.imdb`训练,同时忽略`test_data_dir`,`word_dict`,和 `label_dict` 参数。
- `test_data_dir`:指定测试数据所在的文件夹,若不指定将不进行测试。
- `word_dict`:字典文件所在的路径,若不指定,将从训练数据根据词频统计,自动建立字典。
- `label_dict`:类别标签字典,用于将字符串类型的类别标签,映射为整数类型的序号。
- `batch_size`:指定多少条样本后进行一次神经网络的前向运行及反向更新。
- `num_passes`:指定训练多少个轮次。
### 如何预测
1. 修改 `infer.py` 中以下变量,指定使用的模型、指定测试数据。
```python
model_path = "dnn_params_pass_00000.tar.gz" # 指定模型所在的路径
nn_type = "dnn" # 指定测试使用的模型
test_dir = "./data/test" # 指定测试文件所在的目录
word_dict = "./data/dict/word_dict.txt" # 指定字典所在的路径
label_dict = "./data/dict/label_dict.txt" # 指定类别标签字典的路径
```
2. 在终端中执行 `python infer.py`
<html>
<head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
<script type="text/javascript" src="../.tools/theme/marked.js">
</script>
<link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
<script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
<link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
<link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
}
</style>
<body>
<div id="context" class="container-fluid markdown-body">
</div>
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# 文本分类
以下是本例目录包含的文件以及对应说明:
```text
.
├── images # 文档中的图片
│   ├── cnn_net.png
│   └── dnn_net.png
├── index.html # 文档
├── infer.py # 预测脚本
├── network_conf.py # 本例中涉及的各种网络结构均定义在此文件中,若进一步修改模型结构,请查看此文件
├── reader.py # 读取数据接口,若使用自定义格式的数据,请查看此文件
├── README.md # 文档
├── run.sh # 训练任务运行脚本,直接运行此脚本,将以默认参数开始训练任务
├── train.py # 训练脚本
└── utils.py # 定义通用的函数,例如:打印日志、解析命令行参数、构建字典、加载字典等
```
## 简介
文本分类任务根据给定一条文本的内容,判断该文本所属的类别,是自然语言处理领域的一项重要的基础任务。[PaddleBook](https://github.com/PaddlePaddle/book) 中的[情感分类](https://github.com/PaddlePaddle/book/blob/develop/06.understand_sentiment/README.cn.md)一课,正是一个典型的文本分类任务,任务流程如下:
1. 收集电影评论网站的用户评论数据。
2. 清洗,标记。
3. 模型设计。
4. 模型学习效果评估。
训练好的分类器能够**自动判断**新出现的用户评论的情感是正面还是负面,在舆情监控、营销策划、产品品牌价值评估等任务中,能够起到重要作用。以上过程也是我们去完成一个新的文本分类任务需要遵循的常规流程。可以看到,深度学习方法的巨大优势体现在:**免除复杂的特征的设计,只需要对原始文本进行基础的清理、标注即可**。
[PaddleBook](https://github.com/PaddlePaddle/book) 中的[情感分类](https://github.com/PaddlePaddle/book/blob/develop/06.understand_sentiment/README.cn.md)介绍了一个较为复杂的栈式双向 LSTM 模型,循环神经网络在一些需要理解语言语义的复杂任务中有着明显的优势,但计算量大,通常对调参技巧也有着更高的要求。在对计算时间有一定限制的任务中,也会考虑其它模型。除了计算时间的考量,更重要的一点:**模型选择往往是机器学习任务成功的基础**。机器学习任务的目标始终是提高泛化能力,也就是对未知的新的样本预测的能力:
1. 简单模型拟合能力不足,无法精确拟合训练样本,更加无法期待模型能够准确地预测没有出现在训练样本集中的未知样本,这就是**欠拟合**问题。
2. 然而,过于复杂的模型轻松“记忆”了训练样本集中的每一个样本,但对于没有出现在训练样本集中的未知样本却毫无识别能力,这就是**过拟合**问题。
"No Free Lunch (NFL)" 是机器学习任务基本原则之一:没有任何一种模型是天生优于其他模型的。模型的设计和选择建立在了解不同模型特性的基础之上,但同时也是一个多次实验评估的过程。在本例中,我们继续向大家介绍几种最常用的文本分类模型,它们的能力和复杂程度不同,帮助大家对比学习这些模型学习效果之间的差异,针对不同的场景选择使用。
## 模型详解
`network_conf.py` 中包括以下模型:
1. `fc_net`: DNN 模型,是一个非序列模型。使用基本的全连接结构。
2. `convolution_net`:浅层 CNN 模型,是一个基础的序列模型,能够处理变长的序列输入,提取一个局部区域之内的特征。
我们以情感分类任务为例,简单说明序列模型和非序列模型之间的差异。情感分类是一项常见的文本分类任务,模型自动判断文本中表现出的情感是正向还是负向。以句子 "The apple is not bad" 为例,"not bad" 是决定这个句子情感的关键:
- 对于 DNN 模型来说,只知道句子中有一个 "not" 和一个 "bad",两者之间的顺序关系在输入网络时已丢失,网络不再有机会学习序列之间的顺序信息。
- CNN 模型接受文本序列作为输入,保留了 "not bad" 之间的顺序信息。
两者各自的一些特点简单总结如下:
1. DNN 的计算量可以远低于 CNN / RNN 模型,在对响应时间有要求的任务中具有优势。
2. DNN 刻画的往往是频繁词特征,潜在会受到分词错误的影响,但对一些依赖关键词特征也能做的不错的任务:如 Spam 短信检测,依然是一个有效的模型。
3. 在大多数需要一定语义理解(例如,借助上下文消除语义中的歧义)的文本分类任务上,以 CNN / RNN 为代表的序列模型的效果往往好于 DNN 模型。
### 1. DNN 模型
**DNN 模型结构入下图所示:**
<p align="center">
<img src="images/dnn_net.png" width = "90%" align="center"/><br/>
图1. 本例中的 DNN 文本分类模型
</p>
在 PaddlePaddle 实现该 DNN 结构的代码见 `network_conf.py` 中的 `fc_net` 函数,模型主要分为如下几个部分:
- **词向量层**:为了更好地表示不同词之间语义上的关系,首先将词语转化为固定维度的向量。训练完成后,词与词语义上的相似程度可以用它们的词向量之间的距离来表示,语义上越相似,距离越近。关于词向量的更多信息请参考PaddleBook中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。
- **最大池化层**:最大池化在时间序列上进行,池化过程消除了不同语料样本在单词数量多少上的差异,并提炼出词向量中每一下标位置上的最大值。经过池化后,词向量层输出的向量序列被转化为一条固定维度的向量。例如,假设最大池化前向量的序列为`[[2,3,5],[7,3,6],[1,4,0]]`,则最大池化的结果为:`[7,4,6]`。
- **全连接隐层**:经过最大池化后的向量被送入两个连续的隐层,隐层之间为全连接结构。
- **输出层**:输出层的神经元数量和样本的类别数一致,例如在二分类问题中,输出层会有2个神经元。通过Softmax激活函数,输出结果是一个归一化的概率分布,和为1,因此第$i$个神经元的输出就可以认为是样本属于第$i$类的预测概率。
该 DNN 模型默认对输入的语料进行二分类(`class_dim=2`),embedding(词向量)维度默认为28(`emd_dim=28`),两个隐层均使用Tanh激活函数(`act=paddle.activation.Tanh()`)。需要注意的是,该模型的输入数据为整数序列,而不是原始的单词序列。事实上,为了处理方便,我们一般会事先将单词根据词频顺序进行 id 化,即将词语转化成在字典中的序号。
### 2. CNN 模型
**CNN 模型结构如下图所示:**
<p align="center">
<img src="images/cnn_net.png" width = "90%" align="center"/><br/>
图2. 本例中的 CNN 文本分类模型
</p>
通过 PaddlePaddle 实现该 CNN 结构的代码见 `network_conf.py` 中的 `convolution_net` 函数,模型主要分为如下几个部分:
- **词向量层**:与 DNN 中词向量层的作用一样,将词语转化为固定维度的向量,利用向量之间的距离来表示词之间的语义相关程度。如图2所示,将得到的词向量定义为行向量,再将语料中所有的单词产生的行向量拼接在一起组成矩阵。假设词向量维度为5,句子 “The cat sat on the read mat” 含 7 个词语,那么得到的矩阵维度为 7*5。关于词向量的更多信息请参考 PaddleBook 中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。
- **卷积层**: 文本分类中的卷积在时间序列上进行,即卷积核的宽度和词向量层产出的矩阵一致,卷积沿着矩阵的高度方向进行。卷积后得到的结果被称为“特征图”(feature map)。假设卷积核的高度为 $h$,矩阵的高度为 $N$,卷积的步长为 1,则得到的特征图为一个高度为 $N+1-h$ 的向量。可以同时使用多个不同高度的卷积核,得到多个特征图。
- **最大池化层**: 对卷积得到的各个特征图分别进行最大池化操作。由于特征图本身已经是向量,因此这里的最大池化实际上就是简单地选出各个向量中的最大元素。各个最大元素又被拼接在一起,组成新的向量,显然,该向量的维度等于特征图的数量,也就是卷积核的数量。举例来说,假设我们使用了四个不同的卷积核,卷积产生的特征图分别为:`[2,3,5]`、`[8,2,1]`、`[5,7,7,6]` 和 `[4,5,1,8]`,由于卷积核的高度不同,因此产生的特征图尺寸也有所差异。分别在这四个特征图上进行最大池化,结果为:`[5]`、`[8]`、`[7]`和`[8]`,最后将池化结果拼接在一起,得到`[5,8,7,8]`。
- **全连接与输出层**:将最大池化的结果通过全连接层输出,与 DNN 模型一样,最后输出层的神经元个数与样本的类别数量一致,且输出之和为 1。
CNN 网络的输入数据类型和 DNN 一致。PaddlePaddle 中已经封装好的带有池化的文本序列卷积模块:`paddle.networks.sequence_conv_pool`,可直接调用。该模块的 `context_len` 参数用于指定卷积核在同一时间覆盖的文本长度,即图 2 中的卷积核的高度。`hidden_size` 用于指定该类型的卷积核的数量。本例代码默认使用了 128 个大小为 3 的卷积核和 128 个大小为 4 的卷积核,这些卷积的结果经过最大池化和结果拼接后产生一个 256 维的向量,向量经过一个全连接层输出最终的预测结果。
## 使用 PaddlePaddle 内置数据运行
### 如何训练
在终端中执行 `sh run.sh` 以下命令, 将以 PaddlePaddle 内置的情感分类数据集:`paddle.dataset.imdb` 直接运行本例,会看到如下输入:
```text
Pass 0, Batch 0, Cost 0.696031, {'__auc_evaluator_0__': 0.47360000014305115, 'classification_error_evaluator': 0.5}
Pass 0, Batch 100, Cost 0.544438, {'__auc_evaluator_0__': 0.839249312877655, 'classification_error_evaluator': 0.30000001192092896}
Pass 0, Batch 200, Cost 0.406581, {'__auc_evaluator_0__': 0.9030032753944397, 'classification_error_evaluator': 0.2199999988079071}
Test at Pass 0, {'__auc_evaluator_0__': 0.9289745092391968, 'classification_error_evaluator': 0.14927999675273895}
```
日志每隔 100 个 batch 输出一次,输出信息包括:(1)Pass 序号;(2)Batch 序号;(3)依次输出当前 Batch 上评估指标的评估结果。评估指标在配置网络拓扑结构时指定,在上面的输出中,输出了训练样本集之的 AUC 以及错误率指标。
### 如何预测
训练结束后模型默认存储在当前工作目录下,在终端中执行 `python infer.py` ,预测脚本会加载训练好的模型进行预测。
- 默认加载使用 `paddle.data.imdb.train` 训练一个 Pass 产出的 DNN 模型对 `paddle.dataset.imdb.test` 进行测试
会看到如下输出:
```text
positive 0.9275 0.0725 previous reviewer <unk> <unk> gave a much better <unk> of the films plot details than i could what i recall mostly is that it was just so beautiful in every sense emotionally visually <unk> just <unk> br if you like movies that are wonderful to look at and also have emotional content to which that beauty is relevant i think you will be glad to have seen this extraordinary and unusual work of <unk> br on a scale of 1 to 10 id give it about an <unk> the only reason i shy away from 9 is that it is a mood piece if you are in the mood for a really artistic very romantic film then its a 10 i definitely think its a mustsee but none of us can be in that mood all the time so overall <unk>
negative 0.0300 0.9700 i love scifi and am willing to put up with a lot scifi <unk> are usually <unk> <unk> and <unk> i tried to like this i really did but it is to good tv scifi as <unk> 5 is to star trek the original silly <unk> cheap cardboard sets stilted dialogues cg that doesnt match the background and painfully onedimensional characters cannot be overcome with a scifi setting im sure there are those of you out there who think <unk> 5 is good scifi tv its not its clichéd and <unk> while us viewers might like emotion and character development scifi is a genre that does not take itself seriously <unk> star trek it may treat important issues yet not as a serious philosophy its really difficult to care about the characters here as they are not simply <unk> just missing a <unk> of life their actions and reactions are wooden and predictable often painful to watch the makers of earth know its rubbish as they have to always say gene <unk> earth otherwise people would not continue watching <unk> <unk> must be turning in their <unk> as this dull cheap poorly edited watching it without <unk> breaks really brings this home <unk> <unk> of a show <unk> into space spoiler so kill off a main character and then bring him back as another actor <unk> <unk> all over again
```
输出日志每一行是对一条样本预测的结果,以 `\t` 分隔,共 3 列,分别是:(1)预测类别标签;(2)样本分别属于每一类的概率,内部以空格分隔;(3)输入文本。
## 使用自定义数据训练和预测
### 如何训练
1. 数据组织
假设有如下格式的训练数据:每一行为一条样本,以 `\t` 分隔,第一列是类别标签,第二列是输入文本的内容,文本内容中的词语以空格分隔。以下是两条示例数据:
```
positive PaddlePaddle is good
negative What a terrible weather
```
2. 编写数据读取接口
自定义数据读取接口只需编写一个 Python 生成器实现**从原始输入文本中解析一条训练样本**的逻辑。以下代码片段实现了读取原始数据返回类型为: `paddle.data_type.integer_value_sequence`(词语在字典的序号)和 `paddle.data_type.integer_value`(类别标签)的 2 个输入给网络中定义的 2 个 `data_layer` 的功能。
```python
def train_reader(data_dir, word_dict, label_dict):
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 0
lbl_col = 1
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, label_dict[line_split[lbl_col]]
return reader
```
- 关于 PaddlePaddle 中 `data_layer` 接受输入数据的类型,以及数据读取接口对应该返回数据的格式,请参考 [input-types](http://www.paddlepaddle.org/release_doc/0.9.0/doc_cn/ui/data_provider/pydataprovider2.html#input-types) 一节。
- 以上代码片段详见本例目录下的 `reader.py` 脚本,`reader.py` 同时提供了读取测试数据的全部代码。
接下来,只需要将数据读取函数 `train_reader` 作为参数传递给 `train.py` 脚本中的 `paddle.batch` 接口即可使用自定义数据接口读取数据,调用方式如下:
```python
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
buf_size=1000),
batch_size=batch_size)
```
3. 修改命令行参数
- 如果将数据组织成示例数据的同样的格式,只需在 `run.sh` 脚本中修改 `train.py` 启动参数,指定 `train_data_dir` 参数,可以直接运行本例,无需修改数据读取接口 `reader.py`。
- 执行 `python train.py --help` 可以获取`train.py` 脚本各项启动参数的详细说明,主要参数如下:
- `nn_type`:选择要使用的模型,目前支持两种:“dnn” 或者 “cnn”。
- `train_data_dir`:指定训练数据所在的文件夹,使用自定义数据训练,必须指定此参数,否则使用`paddle.dataset.imdb`训练,同时忽略`test_data_dir`,`word_dict`,和 `label_dict` 参数。
- `test_data_dir`:指定测试数据所在的文件夹,若不指定将不进行测试。
- `word_dict`:字典文件所在的路径,若不指定,将从训练数据根据词频统计,自动建立字典。
- `label_dict`:类别标签字典,用于将字符串类型的类别标签,映射为整数类型的序号。
- `batch_size`:指定多少条样本后进行一次神经网络的前向运行及反向更新。
- `num_passes`:指定训练多少个轮次。
### 如何预测
1. 修改 `infer.py` 中以下变量,指定使用的模型、指定测试数据。
```python
model_path = "dnn_params_pass_00000.tar.gz" # 指定模型所在的路径
nn_type = "dnn" # 指定测试使用的模型
test_dir = "./data/test" # 指定测试文件所在的目录
word_dict = "./data/dict/word_dict.txt" # 指定字典所在的路径
label_dict = "./data/dict/label_dict.txt" # 指定类别标签字典的路径
```
2. 在终端中执行 `python infer.py`。
</div>
<!-- You can change the lines below now. -->
<script type="text/javascript">
marked.setOptions({
renderer: new marked.Renderer(),
gfm: true,
breaks: false,
smartypants: true,
highlight: function(code, lang) {
code = code.replace(/&amp;/g, "&")
code = code.replace(/&gt;/g, ">")
code = code.replace(/&lt;/g, "<")
code = code.replace(/&nbsp;/g, " ")
return hljs.highlightAuto(code, [lang]).value;
}
});
document.getElementById("context").innerHTML = marked(
document.getElementById("markdown").innerHTML)
</script>
</body>
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import os
import gzip
import paddle.v2 as paddle
import network_conf
import reader
from utils import *
def infer(topology, data_dir, model_path, word_dict_path, label_dict_path,
batch_size):
def _infer_a_batch(inferer, test_batch, ids_2_word, ids_2_label):
probs = inferer.infer(input=test_batch, field=['value'])
assert len(probs) == len(test_batch)
for word_ids, prob in zip(test_batch, probs):
word_text = " ".join([ids_2_word[id] for id in word_ids[0]])
print("%s\t%s\t%s" % (ids_2_label[prob.argmax()],
" ".join(["{:0.4f}".format(p)
for p in prob]), word_text))
logger.info('begin to predict...')
use_default_data = (data_dir is None)
if use_default_data:
word_dict = paddle.dataset.imdb.word_dict()
word_reverse_dict = dict((value, key)
for key, value in word_dict.iteritems())
label_reverse_dict = {0: "positive", 1: "negative"}
test_reader = paddle.dataset.imdb.test(word_dict)
else:
assert os.path.exists(
word_dict_path), 'the word dictionary file does not exist'
assert os.path.exists(
label_dict_path), 'the label dictionary file does not exist'
word_dict = load_dict(word_dict_path)
word_reverse_dict = load_reverse_dict(word_dict_path)
label_reverse_dict = load_reverse_dict(label_dict_path)
test_reader = reader.test_reader(data_dir, word_dict)()
dict_dim = len(word_dict)
class_num = len(label_reverse_dict)
prob_layer = topology(dict_dim, class_num, is_infer=True)
# initialize PaddlePaddle
paddle.init(use_gpu=False, trainer_count=1)
# load the trained models
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(model_path, 'r'))
inferer = paddle.inference.Inference(
output_layer=prob_layer, parameters=parameters)
test_batch = []
for idx, item in enumerate(test_reader):
test_batch.append([item[0]])
if len(test_batch) == batch_size:
_infer_a_batch(inferer, test_batch, word_reverse_dict,
label_reverse_dict)
test_batch = []
if len(test_batch):
_infer_a_batch(inferer, test_batch, word_reverse_dict,
label_reverse_dict)
test_batch = []
if __name__ == '__main__':
model_path = 'dnn_params_pass_00000.tar.gz'
assert os.path.exists(model_path), "the trained model does not exist."
nn_type = 'dnn'
test_dir = None
word_dict = None
label_dict = None
if nn_type == 'dnn':
topology = network_conf.fc_net
elif nn_type == 'cnn':
topology = network_conf.convolution_net
infer(
topology=topology,
data_dir=test_dir,
word_dict_path=word_dict,
label_dict_path=label_dict,
model_path=model_path,
batch_size=10)
import sys
import math
import gzip
from paddle.v2.layer import parse_network
import paddle.v2 as paddle
__all__ = ["fc_net", "convolution_net"]
def fc_net(dict_dim,
class_num,
emb_dim=28,
hidden_layer_sizes=[28, 8],
is_infer=False):
"""
define the topology of the dnn network
:param dict_dim: size of word dictionary
:type input_dim: int
:params class_num: number of instance class
:type class_num: int
:params emb_dim: embedding vector dimension
:type emb_dim: int
"""
# define the input layers
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(dict_dim))
if not is_infer:
lbl = paddle.layer.data("label",
paddle.data_type.integer_value(class_num))
# define the embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim)
# max pooling to reduce the input sequence into a vector (non-sequence)
seq_pool = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
for idx, hidden_size in enumerate(hidden_layer_sizes):
hidden_init_std = 1.0 / math.sqrt(hidden_size)
hidden = paddle.layer.fc(
input=hidden if idx else seq_pool,
size=hidden_size,
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=hidden_init_std))
prob = paddle.layer.fc(
input=hidden,
size=class_num,
act=paddle.activation.Softmax(),
param_attr=paddle.attr.Param(initial_std=1.0 / math.sqrt(class_num)))
if is_infer:
return prob
else:
return paddle.layer.classification_cost(
input=prob, label=lbl), prob, lbl
def convolution_net(dict_dim,
class_dim=2,
emb_dim=28,
hid_dim=128,
is_infer=False):
"""
cnn network definition
:param dict_dim: size of word dictionary
:type input_dim: int
:params class_dim: number of instance class
:type class_dim: int
:params emb_dim: embedding vector dimension
:type emb_dim: int
:params hid_dim: number of same size convolution kernels
:type hid_dim: int
"""
# input layers
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(dict_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))
# embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim)
# convolution layers with max pooling
conv_3 = paddle.networks.sequence_conv_pool(
input=emb, context_len=3, hidden_size=hid_dim)
conv_4 = paddle.networks.sequence_conv_pool(
input=emb, context_len=4, hidden_size=hid_dim)
# fc and output layer
prob = paddle.layer.fc(
input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())
if is_infer:
return prob
else:
cost = paddle.layer.classification_cost(input=prob, label=lbl)
return cost, prob, lbl
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
def train_reader(data_dir, word_dict, label_dict):
"""
Reader interface for training data
:param data_dir: data directory
:type data_dir: str
:param word_dict: path of word dictionary,
the dictionary must has a "UNK" in it.
:type word_dict: Python dict
:param label_dict: path of label dictionary
:type label_dict: Python dict
"""
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 1
lbl_col = 0
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, label_dict[line_split[lbl_col]]
return reader
def test_reader(data_dir, word_dict):
"""
Reader interface for testing data
:param data_dir: data directory.
:type data_dir: str
:param word_dict: path of word dictionary,
the dictionary must has a "UNK" in it.
:type word_dict: Python dict
"""
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 1
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
if len(line_split) < word_col: continue
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, line_split[word_col]
return reader
#!/bin/sh
python train.py \
--nn_type="dnn" \
--batch_size=64 \
--num_passes=10 \
2>&1 | tee train.log
import sys
import paddle.v2 as paddle
import gzip
def convolution_net(dict_dim, class_dim=2, emb_dim=28, hid_dim=128):
"""
cnn network definition
:param dict_dim: size of word dictionary
:type input_dim: int
:params class_dim: number of instance class
:type class_dim: int
:params emb_dim: embedding vector dimension
:type emb_dim: int
:params hid_dim: number of same size convolution kernels
:type hid_dim: int
"""
# input layers
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(dict_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
#embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim)
# convolution layers with max pooling
conv_3 = paddle.networks.sequence_conv_pool(
input=emb, context_len=3, hidden_size=hid_dim)
conv_4 = paddle.networks.sequence_conv_pool(
input=emb, context_len=4, hidden_size=hid_dim)
# fc and output layer
output = paddle.layer.fc(
input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost, output, lbl
def train_cnn_model(num_pass):
"""
train cnn model
:params num_pass: train pass number
:type num_pass: int
"""
# load word dictionary
print 'load dictionary...'
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
# define data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=100)
test_reader = paddle.batch(
lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
# network config
[cost, output, label] = convolution_net(dict_dim, class_dim=class_dim)
# create parameters
parameters = paddle.parameters.create(cost)
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
regularization=paddle.optimizer.L2Regularization(rate=1e-3),
model_average=paddle.optimizer.ModelAverage(average_window=0.5))
# add auc evaluator
paddle.evaluator.auc(input=output, label=label)
# create trainer
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=adam_optimizer)
# Define end batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
with gzip.open("cnn_params_pass" + str(event.pass_id) + ".tar.gz",
'w') as f:
parameters.to_tar(f)
# begin training network
feeding = {'word': 0, 'label': 1}
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_pass)
print("Training finished.")
def cnn_infer(file_name):
"""
predict instance labels by cnn network
:params file_name: network parameter file
:type file_name: str
"""
print("Begin to predict...")
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
[_, output, _] = convolution_net(dict_dim, class_dim=class_dim)
parameters = paddle.parameters.Parameters.from_tar(gzip.open(file_name))
infer_data = []
infer_data_label = []
for item in paddle.dataset.imdb.test(word_dict):
infer_data.append([item[0]])
infer_data_label.append(item[1])
predictions = paddle.infer(
output_layer=output,
parameters=parameters,
input=infer_data,
field=['value'])
for i, prob in enumerate(predictions):
print prob, infer_data_label[i]
if __name__ == "__main__":
paddle.init(use_gpu=False, trainer_count=1)
num_pass = 5
train_cnn_model(num_pass=num_pass)
param_file_name = "cnn_params_pass" + str(num_pass - 1) + ".tar.gz"
cnn_infer(file_name=param_file_name)
import sys
import math
import paddle.v2 as paddle
import gzip
def fc_net(dict_dim, class_dim=2, emb_dim=28):
"""
dnn network definition
:param dict_dim: size of word dictionary
:type input_dim: int
:params class_dim: number of instance class
:type class_dim: int
:params emb_dim: embedding vector dimension
:type emb_dim: int
"""
# input layers
data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(dict_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))
# embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim)
# max pooling
seq_pool = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
# two hidden layers
hd_layer_size = [28, 8]
hd_layer_init_std = [1.0 / math.sqrt(s) for s in hd_layer_size]
hd1 = paddle.layer.fc(
input=seq_pool,
size=hd_layer_size[0],
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=hd_layer_init_std[0]))
hd2 = paddle.layer.fc(
input=hd1,
size=hd_layer_size[1],
act=paddle.activation.Tanh(),
param_attr=paddle.attr.Param(initial_std=hd_layer_init_std[1]))
# output layer
output = paddle.layer.fc(
input=hd2,
size=class_dim,
act=paddle.activation.Softmax(),
param_attr=paddle.attr.Param(initial_std=1.0 / math.sqrt(class_dim)))
cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost, output, lbl
def train_dnn_model(num_pass):
"""
train dnn model
:params num_pass: train pass number
:type num_pass: int
"""
# load word dictionary
print 'load dictionary...'
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
# define data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=100)
test_reader = paddle.batch(
lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
# network config
[cost, output, label] = fc_net(dict_dim, class_dim=class_dim)
# create parameters
parameters = paddle.parameters.create(cost)
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
regularization=paddle.optimizer.L2Regularization(rate=1e-3),
model_average=paddle.optimizer.ModelAverage(average_window=0.5))
# add auc evaluator
paddle.evaluator.auc(input=output, label=label)
# create trainer
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=adam_optimizer)
# Define end batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
with gzip.open("dnn_params_pass" + str(event.pass_id) + ".tar.gz",
'w') as f:
parameters.to_tar(f)
# begin training network
feeding = {'word': 0, 'label': 1}
trainer.train(
reader=train_reader,
event_handler=event_handler,
feeding=feeding,
num_passes=num_pass)
print("Training finished.")
def dnn_infer(file_name):
"""
predict instance labels by dnn network
:params file_name: network parameter file
:type file_name: str
"""
print("Begin to predict...")
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2
[_, output, _] = fc_net(dict_dim, class_dim=class_dim)
parameters = paddle.parameters.Parameters.from_tar(gzip.open(file_name))
infer_data = []
infer_data_label = []
for item in paddle.dataset.imdb.test(word_dict):
infer_data.append([item[0]])
infer_data_label.append(item[1])
predictions = paddle.infer(
output_layer=output,
parameters=parameters,
input=infer_data,
field=['value'])
for i, prob in enumerate(predictions):
print prob, infer_data_label[i]
if __name__ == "__main__":
paddle.init(use_gpu=False, trainer_count=1)
num_pass = 5
train_dnn_model(num_pass=num_pass)
param_file_name = "dnn_params_pass" + str(num_pass - 1) + ".tar.gz"
dnn_infer(file_name=param_file_name)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import gzip
import paddle.v2 as paddle
import network_conf
import reader
from utils import *
def train(topology,
train_data_dir=None,
test_data_dir=None,
word_dict_path=None,
label_dict_path=None,
batch_size=32,
num_passes=10):
"""
train dnn model
:params train_data_path: path of training data, if this parameter
is not specified, paddle.dataset.imdb will be used to run this example
:type train_data_path: str
:params test_data_path: path of testing data, if this parameter
is not specified, paddle.dataset.imdb will be used to run this example
:type test_data_path: str
:params word_dict_path: path of training data, if this parameter
is not specified, paddle.dataset.imdb will be used to run this example
:type word_dict_path: str
:params num_pass: train pass number
:type num_pass: int
"""
use_default_data = (train_data_dir is None)
if use_default_data:
logger.info(("No training data are porivided, "
"use paddle.dataset.imdb to train the model."))
logger.info("please wait to build the word dictionary ...")
word_dict = paddle.dataset.imdb.word_dict()
train_reader = paddle.batch(
paddle.reader.shuffle(
lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=100)
test_reader = paddle.batch(
lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
class_num = 2
else:
if word_dict_path is None or not os.path.exists(word_dict_path):
logger.info(("word dictionary is not given, the dictionary "
"is automatically built from the training data."))
# build the word dictionary to map the original string-typed
# words into integer-typed index
build_dict(
data_dir=train_data_dir,
save_path=word_dict_path,
use_col=1,
cutoff_fre=5,
insert_extra_words=["<UNK>"])
if not os.path.exists(label_dict_path):
logger.info(("label dictionary is not given, the dictionary "
"is automatically built from the training data."))
# build the label dictionary to map the original string-typed
# label into integer-typed index
build_dict(
data_dir=train_data_dir, save_path=label_dict_path, use_col=0)
word_dict = load_dict(word_dict_path)
lbl_dict = load_dict(label_dict_path)
class_num = len(lbl_dict)
logger.info("class number is : %d." % (len(lbl_dict)))
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
buf_size=1000),
batch_size=batch_size)
if test_data_dir is not None:
# here, because training and testing data share a same format,
# we still use the reader.train_reader to read the testing data.
test_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(test_data_dir, word_dict, lbl_dict),
buf_size=1000),
batch_size=batch_size)
else:
test_reader = None
dict_dim = len(word_dict)
logger.info("length of word dictionary is : %d." % (dict_dim))
paddle.init(use_gpu=False, trainer_count=1)
# network config
cost, prob, label = topology(dict_dim, class_num)
# create parameters
parameters = paddle.parameters.create(cost)
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
regularization=paddle.optimizer.L2Regularization(rate=1e-3),
model_average=paddle.optimizer.ModelAverage(average_window=0.5))
# create trainer
trainer = paddle.trainer.SGD(
cost=cost,
extra_layers=paddle.evaluator.auc(input=prob, label=label),
parameters=parameters,
update_equation=adam_optimizer)
# begin training network
feeding = {"word": 0, "label": 1}
def _event_handler(event):
"""
Define end batch and end pass event handler
"""
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
logger.info("Pass %d, Batch %d, Cost %f, %s\n" % (
event.pass_id, event.batch_id, event.cost, event.metrics))
if isinstance(event, paddle.event.EndPass):
if test_reader is not None:
result = trainer.test(reader=test_reader, feeding=feeding)
logger.info("Test at Pass %d, %s \n" % (event.pass_id,
result.metrics))
with gzip.open("dnn_params_pass_%05d.tar.gz" % event.pass_id,
"w") as f:
parameters.to_tar(f)
trainer.train(
reader=train_reader,
event_handler=_event_handler,
feeding=feeding,
num_passes=num_passes)
logger.info("Training has finished.")
def main(args):
if args.nn_type == "dnn":
topology = network_conf.fc_net
elif args.nn_type == "cnn":
topology = network_conf.convolution_net
train(
topology=topology,
train_data_dir=args.train_data_dir,
test_data_dir=args.test_data_dir,
word_dict_path=args.word_dict,
label_dict_path=args.label_dict,
batch_size=args.batch_size,
num_passes=args.num_passes)
if __name__ == "__main__":
args = parse_train_cmd()
if args.train_data_dir is not None:
assert args.word_dict and args.label_dict, (
"the parameter train_data_dir, word_dict_path, and label_dict_path "
"should be set at the same time.")
main(args)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import logging
import os
import argparse
from collections import defaultdict
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)
def parse_train_cmd():
parser = argparse.ArgumentParser(
description="PaddlePaddle text classification demo")
parser.add_argument(
"--nn_type",
type=str,
help="define which type of network to use, available: [dnn, cnn]",
default="dnn")
parser.add_argument(
"--train_data_dir",
type=str,
required=False,
help=("path of training dataset (default: None). "
"if this parameter is not set, "
"paddle.dataset.imdb will be used."),
default=None)
parser.add_argument(
"--test_data_dir",
type=str,
required=False,
help=("path of testing dataset (default: None). "
"if this parameter is not set, "
"paddle.dataset.imdb will be used."),
default=None)
parser.add_argument(
"--word_dict",
type=str,
required=False,
help=("path of word dictionary (default: None)."
"if this parameter is not set, paddle.dataset.imdb will be used."
"if this parameter is set, but the file does not exist, "
"word dictionay will be built from "
"the training data automatically."),
default=None)
parser.add_argument(
"--label_dict",
type=str,
required=False,
help=("path of label dictionay (default: None)."
"if this parameter is not set, paddle.dataset.imdb will be used."
"if this parameter is set, but the file does not exist, "
"word dictionay will be built from "
"the training data automatically."),
default=None)
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="the number of training examples in one forward/backward pass")
parser.add_argument(
"--num_passes", type=int, default=10, help="number of passes to train")
return parser.parse_args()
def build_dict(data_dir,
save_path,
use_col=0,
cutoff_fre=0,
insert_extra_words=[]):
values = defaultdict(int)
for file_name in os.listdir(data_dir):
file_path = os.path.join(data_dir, file_name)
if not os.path.isfile(file_path):
continue
with open(file_path, "r") as fdata:
for line in fdata:
line_splits = line.strip().split("\t")
if len(line_splits) < use_col: continue
for w in line_splits[use_col].split():
values[w] += 1
with open(save_path, "w") as f:
for w in insert_extra_words:
f.write("%s\t-1\n" % (w))
for v, count in sorted(
values.iteritems(), key=lambda x: x[1], reverse=True):
if count < cutoff_fre:
break
f.write("%s\t%d\n" % (v, count))
def load_dict(dict_path):
return dict((line.strip().split("\t")[0], idx)
for idx, line in enumerate(open(dict_path, "r").readlines()))
def load_reverse_dict(dict_path):
return dict((idx, line.strip().split("\t")[0])
for idx, line in enumerate(open(dict_path, "r").readlines()))
<html>
<head>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
jax: ["input/TeX", "output/HTML-CSS"],
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true
},
"HTML-CSS": { availableFonts: ["TeX"] }
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
<script type="text/javascript" src="../.tools/theme/marked.js">
</script>
<link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
<script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
<link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
<link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
<link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
}
</style>
<body>
<div id="context" class="container-fluid markdown-body">
</div>
<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Hsigmoid加速词向量训练
## 背景介绍
在自然语言处理领域中,传统做法通常使用one-hot向量来表示词,比如词典为['我', '你', '喜欢'],可以用[1,0,0]、[0,1,0]和[0,0,1]这三个向量分别表示'我'、'你'和'喜欢'。这种表示方式比较简洁,但是当词表很大时,容易产生维度爆炸问题;而且任意两个词的向量是正交的,向量包含的信息有限。为了避免或减轻one-hot表示的缺点,目前通常使用词向量来取代one-hot表示,词向量也就是word embedding,即使用一个低维稠密的实向量取代高维稀疏的one-hot向量。训练词向量的方法有很多种,神经网络模型是其中之一,包括CBOW、Skip-gram等,这些模型本质上都是一个分类模型,当词表较大即类别较多时,传统的softmax将非常消耗时间。PaddlePaddle提供了Hsigmoid Layer、NCE Layer,来加速模型的训练过程。本文主要介绍如何使用Hsigmoid Layer来加速训练,词向量相关内容请查阅PaddlePaddle Book中的[词向量章节](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)。
## Hsigmoid Layer
Hsigmoid Layer引用自论文\[[1](#参考文献)\],Hsigmoid指Hierarchical-sigmoid,原理是通过构建一个分类二叉树来降低计算复杂度,二叉树中每个叶子节点代表一个类别,每个非叶子节点代表一个二类别分类器。例如我们一共有4个类别分别是0、1、2、3,softmax会分别计算4个类别的得分,然后归一化得到概率。当类别数很多时,计算每个类别的概率非常耗时,Hsigmoid Layer会根据类别数构建一个平衡二叉树,如下:
<p align="center">
<img src="images/binary_tree.png" width="220" hspace='10'/> <img src="images/path_to_1.png" width="220" hspace='10'/> <br/>
图1. (a)为平衡二叉树,(b)为根节点到类别1的路径
</p>
二叉树中每个非叶子节点是一个二类别分类器(sigmoid),如果类别是0,则取左子节点继续分类判断,反之取右子节点,直至达到叶节点。按照这种方式,每个类别均对应一条路径,例如从root到类别1的路径编码为0、1。训练阶段我们按照真实类别对应的路径,依次计算对应分类器的损失,然后综合所有损失得到最终损失。预测阶段,模型会输出各个非叶节点分类器的概率,我们可以根据概率获取路径编码,然后遍历路径编码就可以得到最终预测类别。传统softmax的计算复杂度为N(N为词典大小),Hsigmoid可以将复杂度降至log(N),详细理论细节可参照论文\[[1](#参考文献)\]。
## 数据准备
### PTB数据
本文采用Penn Treebank (PTB)数据集([Tomas Mikolov预处理版本](http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz)),共包含train、valid和test三个文件。其中使用train作为训练数据,valid作为测试数据。本文训练的是5-gram模型,即用每条数据的前4个词来预测第5个词。PaddlePaddle提供了对应PTB数据集的python包[paddle.dataset.imikolov](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/dataset/imikolov.py) ,自动做数据的下载与预处理。预处理会把数据集中的每一句话前后加上开始符号\<s>以及结束符号\<e>,然后依据窗口大小(本文为5),从头到尾每次向右滑动窗口并生成一条数据。如"I have a dream that one day"可以生成\<s> I have a dream、I have a dream that、have a dream that one、a dream that one day、dream that one day \<e>,PaddlePaddle会把词转换成id数据作为预处理的输出。
### 自定义数据
用户可以使用自己的数据集训练模型,自定义数据集最关键的地方是实现reader接口做数据处理,reader需要产生一个迭代器,迭代器负责解析文件中的每一行数据,返回一个python list,例如[1, 2, 3, 4, 5],分别是第一个到第四个词在字典中的id,PaddlePaddle会进一步将该list转化成`paddle.data_type.inter_value`类型作为data layer的输入,一个封装样例如下:
```python
def reader_creator(filename, word_dict, n):
def reader():
with open(filename) as f:
UNK = word_dict['<unk>']
for l in f:
l = ['<s>'] + l.strip().split() + ['<e>']
if len(l) >= n:
l = [word_dict.get(w, UNK) for w in l]
for i in range(n, len(l) + 1):
yield tuple(l[i - n:i])
return reader
def train_data(filename, word_dict, n):
"""
Reader interface for training data.
It returns a reader creator, each sample in the reader is a word ID tuple.
:param filename: path of data file
:type filename: str
:param word_dict: word dictionary
:type word_dict: dict
:param n: sliding window size
:type n: int
"""
return reader_creator(filename, word_dict, n)
```
## 网络结构
本文通过训练N-gram语言模型来获得词向量,具体地使用前4个词来预测当前词。网络输入为词在字典中的id,然后查询词向量词表获取词向量,接着拼接4个词的词向量,然后接入一个全连接隐层,最后是Hsigmoid层。详细网络结构见图2:
<p align="center">
<img src="images/network_conf.png" width = "70%" align="center"/><br/>
图2. 网络配置结构
</p>
代码实现如下:
```python
import math
import paddle.v2 as paddle
def network_conf(hidden_size, embed_size, dict_size, is_train=True):
first_word = paddle.layer.data(
name='firstw', type=paddle.data_type.integer_value(dict_size))
second_word = paddle.layer.data(
name='secondw', type=paddle.data_type.integer_value(dict_size))
third_word = paddle.layer.data(
name='thirdw', type=paddle.data_type.integer_value(dict_size))
fourth_word = paddle.layer.data(
name='fourthw', type=paddle.data_type.integer_value(dict_size))
target_word = paddle.layer.data(
name='fifthw', type=paddle.data_type.integer_value(dict_size))
embed_param_attr = paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0)
embed_first_word = paddle.layer.embedding(
input=first_word, size=embed_size, param_attr=embed_param_attr)
embed_second_word = paddle.layer.embedding(
input=second_word, size=embed_size, param_attr=embed_param_attr)
embed_third_word = paddle.layer.embedding(
input=third_word, size=embed_size, param_attr=embed_param_attr)
embed_fourth_word = paddle.layer.embedding(
input=fourth_word, size=embed_size, param_attr=embed_param_attr)
embed_context = paddle.layer.concat(input=[
embed_first_word, embed_second_word, embed_third_word, embed_fourth_word
])
hidden_layer = paddle.layer.fc(
input=embed_context,
size=hidden_size,
act=paddle.activation.Sigmoid(),
layer_attr=paddle.attr.Extra(drop_rate=0.5),
bias_attr=paddle.attr.Param(learning_rate=2),
param_attr=paddle.attr.Param(
initial_std=1. / math.sqrt(embed_size * 8), learning_rate=1))
if is_train == True:
cost = paddle.layer.hsigmoid(
input=hidden_layer,
label=target_word,
num_classes=dict_size,
param_attr=paddle.attr.Param(name='sigmoid_w'),
bias_attr=paddle.attr.Param(name='sigmoid_b'))
return cost
else:
with paddle.layer.mixed(
size=dict_size - 1,
act=paddle.activation.Sigmoid(),
bias_attr=paddle.attr.Param(name='sigmoid_b')) as prediction:
prediction += paddle.layer.trans_full_matrix_projection(
input=hidden_layer,
param_attr=paddle.attr.Param(name='sigmoid_w'))
return prediction
```
需要注意,在预测阶段,我们需要对hsigmoid参数做一次转置,这里输出的类别数为词典大小减1,对应非叶节点的数量。
## 训练阶段
训练比较简单,直接运行``` python hsigmoid_train.py ```。程序第一次运行会检测用户缓存文件夹中是否包含imikolov数据集,如果未包含,则自动下载。运行过程中,每100个iteration会打印模型训练信息,主要包含训练损失和测试损失,每个pass会保存一次模型。
## 预测阶段
预测时,直接运行``` python hsigmoid_predict.py ```,程序会首先load模型,然后按照batch方式进行预测,并打印预测结果。预测阶段最重要的就是根据概率得到编码路径,然后遍历路径获取最终的预测类别,这部分逻辑如下:
```python
def decode_res(infer_res, dict_size):
"""
Inferring probabilities are orginized as a complete binary tree.
The actual labels are leaves (indices are counted from class number).
This function travels paths decoded from inferring results.
If the probability >0.5 then go to right child, otherwise go to left child.
param infer_res: inferring result
param dict_size: class number
return predict_lbls: actual class
"""
predict_lbls = []
infer_res = infer_res > 0.5
for i, probs in enumerate(infer_res):
idx = 0
result = 1
while idx < len(probs):
result <<= 1
if probs[idx]:
result |= 1
if probs[idx]:
idx = idx * 2 + 2 # right child
else:
idx = idx * 2 + 1 # left child
predict_lbl = result - dict_size
predict_lbls.append(predict_lbl)
return predict_lbls
```
预测程序的输入数据格式与训练阶段相同如have a dream that one程序会根据have a dream that生成一组概率通过对概率解码生成预测词one作为真实词方便评估解码函数的输入是一个batch样本的预测概率以及词表的大小里面的循环是对每条样本的输出概率进行解码解码方式就是按照左0右1的准则不断遍历路径直至到达叶子节点需要注意的是本文选用的数据集需要较长的时间训练才能得到较好的结果预测程序选用第一轮的模型仅为展示方便学习效果不能保证
## 参考文献
1. Morin, F., & Bengio, Y. (2005, January). [Hierarchical Probabilistic Neural Network Language Model](http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf). In Aistats (Vol. 5, pp. 246-252).
</div>
<!-- You can change the lines below now. -->
<script type="text/javascript">
marked.setOptions({
renderer: new marked.Renderer(),
gfm: true,
breaks: false,
smartypants: true,
highlight: function(code, lang) {
code = code.replace(/&amp;/g, "&")
code = code.replace(/&gt;/g, ">")
code = code.replace(/&lt;/g, "<")
code = code.replace(/&nbsp;/g, " ")
return hljs.highlightAuto(code, [lang]).value;
}
});
document.getElementById("context").innerHTML = marked(
document.getElementById("markdown").innerHTML)
</script>
</body>
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册