From cae1e97fce837df520a5f52e2c2978b69f946aca Mon Sep 17 00:00:00 2001 From: 0YuanZhang0 <953963890@qq.com> Date: Mon, 26 Aug 2019 14:29:11 +0800 Subject: [PATCH] fix_reference (#3187) --- .../auto_dialogue_evaluation/README.md | 19 ++++++------- .../dialogue_general_understanding/README.md | 27 ++++++++++--------- 2 files changed, 24 insertions(+), 22 deletions(-) diff --git a/PaddleNLP/dialogue_model_toolkit/auto_dialogue_evaluation/README.md b/PaddleNLP/dialogue_model_toolkit/auto_dialogue_evaluation/README.md index 3a5b3f0d..9ef563c7 100644 --- a/PaddleNLP/dialogue_model_toolkit/auto_dialogue_evaluation/README.md +++ b/PaddleNLP/dialogue_model_toolkit/auto_dialogue_evaluation/README.md @@ -567,16 +567,17 @@ python -u main.py \ ``` ## 参考论文 -1、Anjuli Kannan and Oriol Vinyals. 2017. Adversarial evaluation of dialogue models. arXiv preprint arXiv:1701.08198. -2、Ryan Lowe, Michael Noseworthy, Iulian V Serban, Nicolas Angelard-Gontier, Yoshua Bengio, and Joelle Pineau. 2017. Towards an automatic turing test: Learning to evaluate dialogue responses. arXiv preprint arXiv:1708.07149. -3、Sebastian M¨oller, Roman Englert, Klaus Engelbrecht, Verena Hafner, Anthony Jameson, Antti Oulasvirta, Alexander Raake, and Norbert Reithinger. 2006. Memo: towards automatic usability evaluation of spoken dialogue services by user error simulations. In Ninth International Conference on Spoken Language Processing. -4、Kishore Papineni, Salim Roukos, ToddWard, andWei-Jing Zhu. 2002. Bleu: a method for automatic evaluation + +- Anjuli Kannan and Oriol Vinyals. 2017. Adversarial evaluation of dialogue models. arXiv preprint arXiv:1701.08198. +- Ryan Lowe, Michael Noseworthy, Iulian V Serban, Nicolas Angelard-Gontier, Yoshua Bengio, and Joelle Pineau. 2017. Towards an automatic turing test: Learning to evaluate dialogue responses. arXiv preprint arXiv:1708.07149. +- Sebastian M¨oller, Roman Englert, Klaus Engelbrecht, Verena Hafner, Anthony Jameson, Antti Oulasvirta, Alexander Raake, and Norbert Reithinger. 2006. Memo: towards automatic usability evaluation of spoken dialogue services by user error simulations. In Ninth International Conference on Spoken Language Processing. +- Kishore Papineni, Salim Roukos, ToddWard, andWei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311–318. Association for Computational Linguistics. -5、Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan. 2017. Ruber: An unsupervised method for automatic evaluation of open-domain dialog systems. arXiv preprint arXiv:1701.03079. -6、Marilyn AWalker, Diane J Litman, Candace A Kamm, and Alicia Abella. 1997. Paradise: A framework for evaluating spoken dialogue agents. In Proceedings of the eighth conference on European chapter of the Association for Computational Linguistics, pages 271–280. Association for Computational Linguistics. -7、Zhao Yan, Nan Duan, Junwei Bao, Peng Chen, Ming Zhou, Zhoujun Li, and Jianshe Zhou. 2016. Docchat: An information retrieval approach for chatbot engines using unstructured documents. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 516–525. -8、Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023. -9、Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. Text Summarization Branches Out. +- Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan. 2017. Ruber: An unsupervised method for automatic evaluation of open-domain dialog systems. arXiv preprint arXiv:1701.03079. +- Marilyn AWalker, Diane J Litman, Candace A Kamm, and Alicia Abella. 1997. Paradise: A framework for evaluating spoken dialogue agents. In Proceedings of the eighth conference on European chapter of the Association for Computational Linguistics, pages 271–280. Association for Computational Linguistics. +- Zhao Yan, Nan Duan, Junwei Bao, Peng Chen, Ming Zhou, Zhoujun Li, and Jianshe Zhou. 2016. Docchat: An information retrieval approach for chatbot engines using unstructured documents. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 516–525. +- Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023. +- Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. Text Summarization Branches Out. ## 版本更新 diff --git a/PaddleNLP/dialogue_model_toolkit/dialogue_general_understanding/README.md b/PaddleNLP/dialogue_model_toolkit/dialogue_general_understanding/README.md index 0dc5b6b4..77783058 100644 --- a/PaddleNLP/dialogue_model_toolkit/dialogue_general_understanding/README.md +++ b/PaddleNLP/dialogue_model_toolkit/dialogue_general_understanding/README.md @@ -446,19 +446,20 @@ python -u main.py \       用户可在**dgu/define_predict_pack.py**内定义task_name和自定义封装预测接口的对应关系; ## 参考论文 -1、Harshit Kumar, Arvind Agarwal, Riddhiman Dasgupta,Sachindra Joshi, and Arun Kumar. 2017. Dia-logue act sequence labeling using hierarchical en-coder with crf.arXiv preprint arXiv:1709.04250. -2、Changliang Li, Liang Li, and Ji Qi. 2018. A self-attentive model with gate mechanism for spoken lan-guage understanding. InProceedings of the 2018Conference on Empirical Methods in Natural Lan-guage Processing, pages 3824–3833. -3、Ryan Lowe, Nissan Pow, Iulian Serban, and JoellePineau. 2015. The ubuntu dialogue corpus: A largedataset for research in unstructured multi-turn dia-logue systems.arXiv preprint arXiv:1506.08909. -4、Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-rado, and Jeff Dean. 2013. Distributed representa-tions of words and phrases and their compositional-ity. InAdvances in neural information processingsystems, pages 3111–3119. -5、Hiroki Ouchi and Yuta Tsuboi. 2016. Addressee andresponse selection for multi-party conversation. InProceedings of the 2016 Conference on EmpiricalMethods in Natural Language Processing, pages2133–2143. -6、Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, JeremyAng, and Hannah Carvey. 2004. The icsi meetingrecorder dialog act (mrda) corpus. Technical report,INTERNATIONAL COMPUTER SCIENCE INSTBERKELEY CA. -7、Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-beth Shriberg, Rebecca Bates, Daniel Jurafsky, PaulTaylor, Rachel Martin, Carol Van Ess-Dykema, andMarie Meteer. 2000. Dialogue act modeling for au-tomatic tagging and recognition of conversationalspeech.Computational linguistics, 26(3):339–373. -8、Ye-Yi Wang, Li Deng, and Alex Acero. 2005. Spo-ken language understanding.IEEE Signal Process-ing Magazine, 22(5):16–31.Jason Williams, Antoine Raux, Deepak Ramachan-dran, and Alan Black. 2013. The dialog state tracking challenge. InProceedings of the SIGDIAL 2013Conference, pages 404–413. -9、Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc VLe, Mohammad Norouzi, Wolfgang Macherey,Maxim Krikun, Yuan Cao, Qin Gao, KlausMacherey, et al. 2016. Google’s neural ma-chine translation system: Bridging the gap betweenhuman and machine translation.arXiv preprintarXiv:1609.08144.Kaisheng -10、Yao, Geoffrey Zweig, Mei-Yuh Hwang,Yangyang Shi, and Dong Yu. 2013. Recurrent neu-ral networks for language understanding. InInter-speech, pages 2524–2528. -11、Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu, YingChen, Wayne Xin Zhao, Dianhai Yu, and Hua Wu.2018. Multi-turn response selection for chatbotswith deep attention matching network. InProceed-ings of the 56th Annual Meeting of the Associationfor Computational Linguistics (Volume 1: Long Pa-pers), volume 1, pages 1118–1127. -12、Su Zhu and Kai Yu. 2017. Encoder-decoder withfocus-mechanism for sequence labelling based spo-ken language understanding. In2017 IEEE Interna-tional Conference on Acoustics, Speech and SignalProcessing (ICASSP), pages 5675–5679. IEEE. -13、Jason Williams, Antoine Raux, Deepak Ramachan-dran, and Alan Black. 2013. The dialog state track-ing challenge. InProceedings of the SIGDIAL 2013Conference, pages 404–413. + +- Harshit Kumar, Arvind Agarwal, Riddhiman Dasgupta,Sachindra Joshi, and Arun Kumar. 2017. Dia-logue act sequence labeling using hierarchical en-coder with crf.arXiv preprint arXiv:1709.04250. +- Changliang Li, Liang Li, and Ji Qi. 2018. A self-attentive model with gate mechanism for spoken lan-guage understanding. InProceedings of the 2018Conference on Empirical Methods in Natural Lan-guage Processing, pages 3824–3833. +- Ryan Lowe, Nissan Pow, Iulian Serban, and JoellePineau. 2015. The ubuntu dialogue corpus: A largedataset for research in unstructured multi-turn dia-logue systems.arXiv preprint arXiv:1506.08909. +- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-rado, and Jeff Dean. 2013. Distributed representa-tions of words and phrases and their compositional-ity. InAdvances in neural information processingsystems, pages 3111–3119. +- Hiroki Ouchi and Yuta Tsuboi. 2016. Addressee andresponse selection for multi-party conversation. InProceedings of the 2016 Conference on EmpiricalMethods in Natural Language Processing, pages2133–2143. +- Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, JeremyAng, and Hannah Carvey. 2004. The icsi meetingrecorder dialog act (mrda) corpus. Technical report,INTERNATIONAL COMPUTER SCIENCE INSTBERKELEY CA. +- Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-beth Shriberg, Rebecca Bates, Daniel Jurafsky, PaulTaylor, Rachel Martin, Carol Van Ess-Dykema, andMarie Meteer. 2000. Dialogue act modeling for au-tomatic tagging and recognition of conversationalspeech.Computational linguistics, 26(3):339–373. +- Ye-Yi Wang, Li Deng, and Alex Acero. 2005. Spo-ken language understanding.IEEE Signal Process-ing Magazine, 22(5):16–31.Jason Williams, Antoine Raux, Deepak Ramachan-dran, and Alan Black. 2013. The dialog state tracking challenge. InProceedings of the SIGDIAL 2013Conference, pages 404–413. +- Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc VLe, Mohammad Norouzi, Wolfgang Macherey,Maxim Krikun, Yuan Cao, Qin Gao, KlausMacherey, et al. 2016. Google’s neural ma-chine translation system: Bridging the gap betweenhuman and machine translation.arXiv preprintarXiv:1609.08144.Kaisheng +- Yao, Geoffrey Zweig, Mei-Yuh Hwang,Yangyang Shi, and Dong Yu. 2013. Recurrent neu-ral networks for language understanding. InInter-speech, pages 2524–2528. +- Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu, YingChen, Wayne Xin Zhao, Dianhai Yu, and Hua Wu.2018. Multi-turn response selection for chatbotswith deep attention matching network. InProceed-ings of the 56th Annual Meeting of the Associationfor Computational Linguistics (Volume 1: Long Pa-pers), volume 1, pages 1118–1127. +- Su Zhu and Kai Yu. 2017. Encoder-decoder withfocus-mechanism for sequence labelling based spo-ken language understanding. In2017 IEEE Interna-tional Conference on Acoustics, Speech and SignalProcessing (ICASSP), pages 5675–5679. IEEE. +- Jason Williams, Antoine Raux, Deepak Ramachan-dran, and Alan Black. 2013. The dialog state track-ing challenge. InProceedings of the SIGDIAL 2013Conference, pages 404–413. ## 版本更新 -- GitLab