Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c16bdb55
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c16bdb55
编写于
2月 06, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add more comments in model conf and make it more concise
上级
f5811ba4
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
66 addition
and
55 deletion
+66
-55
fluid/DeepASR/model.py
fluid/DeepASR/model.py
+66
-55
未找到文件。
fluid/DeepASR/model.py
浏览文件 @
c16bdb55
...
...
@@ -12,37 +12,20 @@ def stacked_lstmp_model(hidden_dim,
parallel
=
False
,
is_train
=
True
,
class_num
=
1749
):
feature
=
fluid
.
layers
.
data
(
name
=
"feature"
,
shape
=
[
-
1
,
120
*
11
],
dtype
=
"float32"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
if
parallel
:
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
feat_
=
pd
.
read_input
(
feature
)
label_
=
pd
.
read_input
(
label
)
prediction
,
avg_cost
,
acc
=
_net_conf
(
feat_
,
label_
,
hidden_dim
,
proj_dim
,
stacked_num
,
class_num
,
is_train
)
for
out
in
[
avg_cost
,
acc
]:
pd
.
write_output
(
out
)
""" The model for DeepASR. The main structure is composed of stacked
identical LSTMP (LSTM with recurrent projection) layers.
# get mean loss and acc through every devices.
avg_cost
,
acc
=
pd
()
avg_cost
=
fluid
.
layers
.
mean
(
x
=
avg_cost
)
acc
=
fluid
.
layers
.
mean
(
x
=
acc
)
else
:
prediction
,
avg_cost
,
acc
=
_net_conf
(
feature
,
label
,
hidden_dim
,
proj_dim
,
stacked_num
,
class_num
,
is_train
)
return
prediction
,
avg_cost
,
acc
Args:
hidden_dim(int): The hidden state's dimension of the LSTMP layer.
proj_dim(int): The projection size of the LSTMP layer.
stacked_num(int): The number of stacked LSTMP layers.
parallel(bool): Run in parallel or not, default `False`.
is_train(bool): Run in training phase or not, default `True`.
class_dim(int): The number of output classes.
"""
def
_net_conf
(
feature
,
label
,
hidden_dim
,
proj_dim
,
stacked_num
,
class_num
,
is_train
):
# network configuration
def
_net_conf
(
feature
,
label
):
seq_conv1
=
fluid
.
layers
.
sequence_conv
(
input
=
feature
,
num_filters
=
1024
,
...
...
@@ -88,3 +71,31 @@ def _net_conf(feature, label, hidden_dim, proj_dim, stacked_num, class_num,
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
prediction
,
avg_cost
,
acc
# data feeder
feature
=
fluid
.
layers
.
data
(
name
=
"feature"
,
shape
=
[
-
1
,
120
*
11
],
dtype
=
"float32"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
if
parallel
:
# When the execution place is specified to CUDAPlace, the program will
# run on all $CUDA_VISIBLE_DEVICES GPUs. Otherwise the program will
# run on all CPU devices.
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
feat_
=
pd
.
read_input
(
feature
)
label_
=
pd
.
read_input
(
label
)
prediction
,
avg_cost
,
acc
=
_net_conf
(
feat_
,
label_
)
for
out
in
[
avg_cost
,
acc
]:
pd
.
write_output
(
out
)
# get mean loss and acc through every devices.
avg_cost
,
acc
=
pd
()
avg_cost
=
fluid
.
layers
.
mean
(
x
=
avg_cost
)
acc
=
fluid
.
layers
.
mean
(
x
=
acc
)
else
:
prediction
,
avg_cost
,
acc
=
_net_conf
(
feature
,
label
)
return
prediction
,
avg_cost
,
acc
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录