diff --git a/PaddleCV/image_classification/scripts/train/SE_ResNet50_vd_fp16.sh b/PaddleCV/image_classification/scripts/train/SE_ResNet50_vd_fp16.sh index a6eb162e56250e1d28caa8fcdecdea2a86f43ca6..4f80603eff0a76c03e9dd27cc6faabed0a291c10 100644 --- a/PaddleCV/image_classification/scripts/train/SE_ResNet50_vd_fp16.sh +++ b/PaddleCV/image_classification/scripts/train/SE_ResNet50_vd_fp16.sh @@ -1,6 +1,6 @@ #SE_ResNet50_vd -export CUDA_VISIBLE_DEVICES=4 +export CUDA_VISIBLE_DEVICES=0 export FLAGS_conv_workspace_size_limit=4000 #MB export FLAGS_cudnn_exhaustive_search=1 @@ -9,7 +9,9 @@ export FLAGS_cudnn_batchnorm_spatial_persistent=1 DATA_DIR="Your image dataset path, e.g. /work/datasets/ILSVRC2012/" DATA_FORMAT="NHWC" -USE_FP16=true #whether to use float16 +USE_AMP=true #whether to use amp +USE_PURE_FP16=false +MULTI_PRECISION=${USE_PURE_FP16} USE_DALI=true USE_ADDTO=true @@ -26,7 +28,9 @@ python train.py \ --data_dir=${DATA_DIR} \ --batch_size=128 \ --lr_strategy=cosine_decay \ - --use_fp16=${USE_FP16} \ + --use_amp=${USE_AMP} \ + --use_pure_fp16=${USE_PURE_FP16} \ + --multi_precision=${MULTI_PRECISION} \ --data_format=${DATA_FORMAT} \ --lr=0.1 \ --num_epochs=200 \